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Abstract. In this paper, we first introduce the conformable fractional Laplace trans-
form. Then, we give its generalization for higher-order. Finally, as an application, we
solve a non-homogeneous conformable fractional differential equation with variable
coefficients and a system of fractional differential equations.
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1 Introduction

Fractional derivative emergence date back to the time of calculus. In 1695, L'Hospital won-
dered about the meaning of Zi{ if n = %, since then, researchers have been attempting to de-
fine a fractional derivative. Some of which are : Riemann-Liouville fractional definitions [15],
Caputo fractional definitions [9,15], Griinwald-Letnikov fractional derivative [16], Atangana-
Baleanu fractional definitions [5], Hadamard fractional integral [14], Caputo-Fabrizio frac-
tional derivative [9] and conformable fractional definitions [12]. Most of the definitions give
numerical solution to the problems. However, the conformable fractional derivative is a natu-
ral definition which gives us simple and easy solutions for the problems. For more different
applications on conformable fractional derivative, the reader can refer to [1,2,4,6-8,10,11].

In 2015, Abdeljawad Thabet defined the conformable fractional Laplace transform [1]
which will help to solve many fractional differential equations. In order to study the solution
of the most challenging problems, like a non-homogeneous fractional differential equation
with variables coefficients for higher-order, we generalize the conformable fractional Laplace
transform for higher-order. Finally, we use this generalization to solve fractional differential
equations and a system as an application.

For more details on conformable fractional Laplace transform, we refer the reader to [1,3,
6,13,18].
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2 Basics of conformable fractional Laplace transform

Definition 2.1. Let f : [0,00) — R be a real valued function and 0 < a < 1. Then the
conformable fractional Laplace transform of f is defined as:

La{f(x)} = Fald) = /Ooo e (%) dax = /O et f () .

provided the integral exists.

Let us have as an example for the conformable fractional Laplace transform of the usual
functions in the theorem bellow.

Theorem 2.2. Leta,p,c € Rand 0 < o < 1. Then
(1) L4 {c} (&) = C , ¢ > 0.

v r(142)

(2) 2, {xv}(g)— S E>0
(3) 2, { ﬂr}(
(4) 2, { e

(5) € {cosat } (&) = pia € > 0.
(6) 24 {smha%} (&) = o, & > |a].
(7) Lu {cosha%“} (¢) = 52—%' ¢ > |al.

Proof. Follows by applying Definition 2.1 O

One of the excellent results is the relation between the usual, and the conformable frac-
tional Laplace transforms, given in the theorem below.

Theorem 2.3. Let f : [0,00) — R be a function such that L, {f(x)} (&) = Fu(&) exists. Then

L@} @) = Fa@ = ¢{f ()?) } @), 0<as<1.

Proof. See [1,3]. O
Theorem 2.4. Let f : [0,00) - R, g:[0,00) = Randlet A, y,a € Rand 0 < o < 1. Then

(1) L4 {)\f() #g (x) :)‘F(>+VG1X(€)/€>O-

(2) ¢ {e }(6) W(E+a), 6> al.

(3) o {If (x >}< )= 28 & >0,

@ ¢ {2 (X)}(C)Z(—l)” o Fu(©), 6> 0.
(5) L {(f*8) (1)} = Ful§)Gu (§), & > 0.

where F, and G, are the conformable fractional Laplace transform of the functions f and g respectively,
f * g is the convolution product of f and g and I*f (x) is the conformable fractional integral.

Proof. See [1,3]. O
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2.1 Generalization of fractional Laplace transform

Theorem 2.5. Let f : [0,00) — R be a continuous real valued differentiable function and 0 < a < 1.
Then

L AD"f(x)} = EFu() — £(0), ¢ > 0.
Proof. See [1,3]. ]

Theorem 2.6. Let f : [0,00) — R be a continuous real valued differentiable function and 0 < a < 1.
Then

2, {D*f(x)} = & Fu(E) — f*(0) = £ (0), &>0.

Proof. By using Definition 2.1 and integration by parts, we find:

/ e’g%DZ"‘f (x)dyx
0

[ee]

& {D*f(x)}

= SO+ DY () dx
= —f*(0) + L D" f(x)}.
By the previous theorem we get the result.
AD*f(x)} = CFa(@) — f*(0) = Ef (0).
O

Theorem 2.7. Let f : [0,00) — R be a continuous real valued differentiable function and 0 < a < 1.
Then

Lo {D*f(x)} = EFa(@) — 2 (0) = 5f* (0) = 82f (0), &>0.

Proof. By using Definition 2.1 and integration by parts, we have:
/Ooo e 8 D3 f (x)dyx
= /OO D*D? f (x) e 1y

= d
= [Tt I ar
= Jim [ € D> (x +/ D2 f (x) e e €% dx
= —f*(0)+ (;’/O et (D*f(x)) dux
= 7 (0) + L D" f(x)}.

Lo {D*f(x)}
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By the previous theorem we get the result.

2, {D*f(x)} = 8Fu(8) — f* (0) — &f* (0) — &°f (0).

Theorem 2.8. Generalization of (C.F.L.T)
Let f : [0,00) — R be a continuous real valued differentiable function and 0 < « < 1, then for any
integer number n we have :

Q,X{Dw‘)f(x)} = "Fu(8) - f(n Da “(0) — Cf" 2)a ( ) — C(z)f(nﬁa)a 0)

....... =2 e 0y — 2= £ (0)

& a((f) _ é‘(o)f(” 1-0)a “(0) — g(l)f(n—l—l)tx (0) — éc(Z)f(n—l—Z)a (0)
— e — g=1=0 My — ¢=D £ (0)

Hence

n—1
e, {D(”“)f(x)} = FF() - Y dfrmie ), &>o.
=0

Proof. We are going to prove this theorem by induction.
For n =1, 2,3 the formula is true ( see the previous theorems ).
Now, suppose that the formula is true for n and prove it for n + 1.

n—1 )

that is £, {D(”"‘)f(x)} ="Fu(l) - ). gfe=imbe(0), &> 0is true.
j=0

By using Definition 2.1 and integration by parts, we have:

e, {D(n-i-l)af(x)} _ / e—r;‘% D(n-i—l)af (x) dyx
0
= /Oo e~ DD f (1) 301y
0
= / D*D™ f (x) e Ly
0
= [Tttt LD (2
0 dx
- [ f‘dWV(>
0 dx
= [e*‘:%D”“ (x) —|—/ D" f (x) §x“’1e’§%dx
= O +E e (D) d,

= " (0) + g/o e C5 (D™ F(x)) dax
= —f"(0)+ &L {D"f(x)} (since the formula is true)

n—1
= O+ Gvu>—zaﬁ””%m)

j=0
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Therefore
e (DU} = o) R R ErT
= A - - D
= "R©) - ;Jéff<”—f—1>“ (0).
L

Which complete the proof of the theorem. m]

3 Applications

We use the conformable fractional Laplace transform as an application to solve some prob-
lems. In the first one, we solve a system of fractional differential equations with constant
coefficients of three unknowns. In the second, we apply the generalization of (C.EL.T) to
solve a non-homogeneous fractional differential equation with variables coefficients.

Problem 1 :

Y =Y - Y+ Ys,

Yz(a) = =21+ Y23,
Y =~y 4 s,

Conditions 1 :
Yl(O) :YZ(O) =Y3(0) =1 O0<a<l

Solution :

Let £, {1} = Fa(§), Yo {y2} = Ga(§) and Lu {Y3} = Ha(C)-
When applying the conformable fractional Laplace transform on all the system of fractional
differential equation and using the giving conditions, we get:

CFa(‘:)_l :Pa(g)_ca(§)+Ha(C)/
Gu() — — 2Fa(8) + Ga(8) — Ha(S),

(
Ha(g) - - Ga(é) + Hoc(g)'

Which implies
(€ —DE(E) +Gu(§) — Ho(8) =1,
ZPDC(C) (é - 1)Ga(g) + Ha((:) =1,
Ga(€)+(€_1)Ha(§) =1

Now, we can use Cramers rule to obtain solutions for F,(¢), G,(&) and H,({).
First
(¢—-1) 1 -1
A= 2 (-1 1 |=(-35).
0 1 (&—1)
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Hence
1 1 -1
1 (62 —20)
iy =51 @G- 1 |= 5t
We are going to find G, {¢} again using Cramer’s Rule.
R
In the similar way, we get H, ()
¢-1 1 2
_1 ~ _ (§8-3¢+2)

Using partial fraction to rewrite F,, G, and H, in this way

1 1 1
C1§+C2?+C3(g_3),

for some constants cq, c2 and c3 to make the calculation easy.
Therefore, we get

F“(é’) = g%—’_%( 13 7
_ 131 61 4 1
Cul) =5¢- 5z~ sy
_ 71 61 2 1
Ha(§) =57-5z+5ey

(3.1)

Applying the conformable fractional Laplace inverse transform on all the system (3.1)
using the properties in Theorem 2.2 and Theorem 2.4 we obtain the solution of our problem.

GUHADY =3¢ {3 e {3} 3 {
Then ’
Yi(x) =§+38%, |
no =554t
Ya(x) =58 4 2e%.

Hence a result as required.

Problem 2 :
Y3 (x) + Y2 (x) — %Y(x) +2Y(x) = cos %

Conditions 2 :
Y2*(0) = Y*(0) = Y(0) = 0.

(3.2)

(3.3)
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Solution :
Let us take the conformable fractional Laplace transform of both sides and using the given
conditions, we get equation 3.4

d _ ¢
FY(5) +37¥ () - (—1)17gr (C¥(5)) +2¥(¢) = R (34)
Where ¥(&) = €,{Y} and ¢ > 0.
This follows from the properties of (C.EL.T) in Theorem 2.2 and Theorem 2.4,
(% {Zf 0} © = (1" & Ra@), ¢>0).
Then :
@+ E+DYE + O+ O = g @5)
This equation can be simplified to:
: _ ¢
CY Q)+ @ +E+¥ O+ =z
Hence, we find :
, B+e+3 1
Y (Z)+ ((:) Y(&)+ = T (3.6)

Which is a first order ordinary non-homogeneous linear differential equation with variable
coefficients.
Applying theory of linear differential equations we obtain:

v = o) [/ JE)e 1

etk

_ e—<§+§+3lng> [/3<§;+§;+3lng>§21+1d5+k

for some constant k.

Therefore
212431
fe<3 2 n§>621+1dg+k
Y (&) = — for some constant k.
(55 +3me)
Claim :

The conformable fractional Laplace inverse transform exists (¥ (&) € Dom (€, 1)).

Proof.

1. Iim ¥ () = % indeterminate.
g—00 (o]

Then we have to use L Hopital's rule to get :

<§+§+31n§> .
lim ¥ () = lim ‘ 3(6?1) = lim L = 0.
e 0 (prpd)elsHieng S (@rced) @41)
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I (§+§+31ng diik

e

2. lim ¢¥ () = lim ¢ — ,;z+1 = = indeterminate.
E—oo E—oo e<%+%+31n§> 0o

Thus we have to use L'Hopital's rule to find :

lim £¥ (£) = lim e<§+§+3m§> <52+1) +Je ( + +31“§> 2dE +k )
g—o0 g—o0 <§2+C+%) e<%+72+31n§)

Which is also indeterminate, so we reuse L Hopital's rule again :
1 2 3 g 1-¢2
+(2+e+2) (255) +
lim {¥ (§) = lim (51) * ) (#) ((‘32“) )
Ee0 §e0 <2§+1—§)+(§2+§+3)

After simplifying and using the properties of limits calculations, we get :

lim ¢Y (§) = 11m &

§—o0 {—o0 66

=0.

Hence a result as required.

Now, we can reformulate ¥(¢) to become :
s

peel5E) o
3

S (5+9)

Let us approximate the Exponential by the first 2-terms of the series expansion.

ie:<e<§+§;> (1+5% +‘32)>

&+ k

for some constant k.

(¢ =

22

Therefore
i [e (1+ 24 ) §2+1d§+k B U (&6 + 385 + 68%) Czild(;+6k}

& (1+§+%2> § (26° + 325 + 6¢%)

Hence
. [ (22°+3¢° + 6¢°%) ngdC + 6k
i (28° + 385 + 68%)
Choose
[ (286 +3¢° +62°)
(4]
By division algorithm we obtain :
—3¢
_ 4 3 2
I = 284438 - 282436 +2+ — i1
2 3 2¢

= 28 437% — 22 2— — = .
E*+38 — 2% 432 + 21 2241
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Then
2 3 28
_ 4 3 _ 2 _ >
/Id§+6k - /2@ F30 2432 g C2+1al<;f+6k
5 4 3 2
€5+3C 53+3§ +2¢ — 2tan *15— In |& + 1| + 6k.

So ¥ (&) after simplification becomes :

()~ 28 +38 28 435 27+ 2tan~1¢ — 2In|¢% + 1] + 6k
i (26° +385 + 6¢°) ‘

For some constant k.
Now, we approach tan~! & + 6k and In |¢? + 1| using the series expansion (1-term).
Starting by tan~! ¢ + 6k :

tan~1¢ 46k = /ngg /1_ ) :/i —@)dg, (¢ < 1

n

= /1—§2+€4—C6—|—....d§:/i ) @2

3 5 7
= ¢+¢— g——i—%— g——l— for some constant c.
Then
4 00 " C;an-H
tan= ¢ = (c—6k)—|—1;)(—1) il

Letting ¢ = 0 then we obtain (¢ — 6k) =0, so

oo 2n+1 3 a5 a7
-1 n 6 & & ¢
= -1 — 2 42
tan "¢ n;o( Vit st s T
So the approach can be taken as :
tan 1 Fx ¢

Secondly In |&2 41| :

ln‘§2+1‘ = i (-1)"

Hence
In|g* 41| = &
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Finally, after these estimations ¥ (&) becomes :

5 4 3 2
2§ +35 —25 +35 28 —2¢ - 32
(28°+36° + 6¢3)

Q

¥(¢)

28 438 28
(266 + 38> +6¢3)

2
2
2% +35 -2
(2834322 +6)
1[(248* +45;—4)
6 | (2¢3+3¢2+6)
Now, we have to reformulate ¥ (&) to take the conformable fractional Laplace inverse trans-

form easier.
Let us start by the denominator.

283 + 38246 = 0.
Rewrite the equation as,
3
&+58+3=0. (37)

It is important to mention a formula called the cubic formula for finding the roots of (2.6).
The cubic formula for finding roots of (2.6) as contained is given by,

letP:b—éz—%andqzzz—“;—%—kc:%,where,a:%,szandc:?).
Discriminant 5 s
q-, p° _ 168
(2) 4+27 64>0

As noted earlier, the nature of the roots of a cubic equation depends on whether the associated
discriminant is positive, negative or zero.
Roots of a cubic equation when A > 0 there is only one real solution.

- (4 v (- vB)' -

= —2.14937...

[SSE

By division algorithm we conclude

203 +38%+6

A 2 o
&+ 2.14937... 2¢° —1.29875...¢ + 2.79150...

203 £ 302 + 6 = (&+2.14937...) (2% — 1.29875...& + 2.79150...)

g (o) o L[ (24824450 —4) | 1 (2.48% + 4.5¢ — 4)
©)~3 203430246 | 6| (F+214937..)(2¢% —1.29875...& +2.79150...) | °

Now, we have to use partial fraction decomposition where the degree of the polynomial in
the numerator is less than the degree of the polynomial in the denominator to make the
conformable fractional Laplace inverse (271 transform exist.

Hence

1 c1 26+ c3
Y©)~g [(g 1 2.14937.) T (282 —129875.¢. 4 2, 79150...)} '
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By identification we get

c1 =—0.17437...
¢y =+ 274874...
03 =—1.63455...
Therefore 1 0.17437 2.74874..F — 1.63455
‘P z - - . cee . coe - . cee . 3‘8
©)=3 [ (@ 1214937..) " (282 —1.29875..¢ + 2, 79150...)} (3.8)

Applying the conformable fractional Laplace inverse transform to the both sides of equation
(2.7) we obtain

_ 1 __ —0.17437... 1 2.74874...C — 1.63455...
1 ~ —q-1 Zo-1
Y {T (C)} ~ 68"‘ { ((f + 2.14937...) } + 6~ { (2(';2 —1.29875...¢ 4 2, 79150...) } ’

By linearity of £, we get

_ 1 0.17437... 1. 2.74874..%
LY @) = _62“1{(<§+2.14937...)} 68”‘1{(2@2—1.29875...§+2,79150...)}

To 1.63455...
6 | (282 —1.29875..Z +2,79150...) | °

To facilitate and simplify our calculation we must rewrite the second denominator as we apply

the property of Theorem 2.4 (Q,X {e*“%f (x)} (&) = Fu(l+a), &> ]a|) :
1 _ 0.17437... 1 __ 2.74874..C
~ __q1 — o1
Y(x) 6 { (¢ +2.14937...) } HETRS { (£—0.325..)2 + 1.29012... }

1

- 1.63455...
127% (¢-0325.)2+1.29012.. [ °

Finally we conclude that

Wi v o
Y(x) ~ —0.029061... ¢ (214997-0) 4+ 0.22906... (0325-7) Cos<\/1.29012... ’;)

o

163455 (0 325 ﬂ) . ( X )
- ——————— e\ ) sin | V1.29012... — .
12 /1.29012... o

Hence a result as required.

Problem 3 :

Now, we will use the conformable fractional Laplace transform method to find the induced
deflection function Y(x) of a cantilever beam subjected to a uniform distributed load with
intensity Wy on half of the beam span, as illustrated in the figure bellow.

W(x)

EI °
Where E and I are respectively the Young’s modulus of the beam material and the section
moment of inertia of the beam and

Wo if0<x<L,
W(x) = -T2
) {0 if f <x<L.

Y40 (x) = (3.9)
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]
"

Figure 3.1: A cantilever beam subjected to uniform distributed load.

Conditions 3 :

YCI(L)y =y®)(L)y=0, Y®(0)=Y(0)=0. (3.10)

Solution :
Take the conformable fractional Laplace transform of both sides of equation (2.8) and using
the conditions (2.9) we get :

" M . Wo (1 —E_gk) . L*
EHY(E) — Y**(0) — 2Y*(0) = £ & k= TR

Since
o o L v
L{W(x)} = / e’é%W(x)dax = /2 e~ &% Wod,x
0 0
_ WO % a—1 7(;‘& o WO _Fxr %
= ? A cx“ e dx = 7 [e }0
_ Wor, & _ Lt
= 3 [1 e }, k= TE
Thus
YG(0)  Y(0) Wy (1—e k) L®
Y(¢) = o tm tE om k=—. (3.11)
1. lim ¥(&) =0,
Clearly G0

2. glgn CY¥(&) =0 (bounded).

Then we apply the conformable fractional Laplace inverse transform on all equation (2.10)
to get the solution.

B o Y(3v¢)(0) B Y(2vf)(0) (W (1_ef§k) L
Qal{‘{r(g)}_ﬁal{ﬁ}‘{'ﬁal{ 63 +£“1{E155}’ k—llex.
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7=, ¢ >0, p>—1>,weget

o

g-1 {Y(Ba)(o) } _ Y(3a)(0)2;1 {54}

YG2(0) a®T(1+3)
wW3T(1+3) ¢+3) 7
Y(B“)(O) 3
2403

w1 [YH0) Y0,
o 53 - 602 :

Let approach the exponential by two first terms of expansion (e*Ck ~1-— gfk), then

1 [ Wo (1—e~¢K) Woo1f1 1 (Ck)
c{B s~ Beare W)

_ Wo 2 4n k 3u
- El <1200¢4x 243" )

p =3«

similarly

Q

Hence, the solution is given as

YOI(0) 5 YE(0) o Wo [ 2 ko 3
Y~ e Tt e xa+151<120a4xa_24a3xa>'

It is easy to use the conditions to calculate Y3*)(0) and Y(2¥)(0).
Finally, the solution of equation (2.8) is given as:

2403 602 120a* 24,

YCI©0) 30, Y®(0) 20 L Wy (2 .4 k .3 . L
Y(x) ~ x°% + x"‘—l—ﬁ( x"‘—7x”‘) if0 <x <3,
0 ift <x <L

4 Conclusion

91

We conclude that the conformable fractional Laplace transform can be used in solving the
most difficult fractional differential equations and systems, as we provide in the solution of
Problem 1 and Problem 2. Also, this fractional transform has many applications in physics

and engineering, as mentioned in Problem 3.
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