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Abstract. In this paper, we investigate the form of the solutions of the following systems
of difference equations of second order

xn+1 =
xnyn−1

xn + yn
, yn+1 =

xn−1yn

xn + yn
,

xn+1 =
xnyn−1

xn − yn
, yn+1 =

xn−1yn

xn − yn
, n = 0, 1, ...,

where the initial conditions x−1, x0, y−1 and y0 are arbitrary nonzero real numbers.
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1 Introduction

In this paper, we deal with the behavior of the solution of the following system of difference
equation

xn+1 =
xnyn−1

xn + yn
, yn+1 =

xn−1yn

xn + yn
,

xn+1 =
xnyn−1

xn − yn
, yn+1 =

xn−1yn

xn − yn
, n = 0, 1, ...,

where the initial conditions x−1, x0, y−1 and y0 are arbitrary nonzero real numbers.
The hypothesis of difference equations involves a focal position in applicable analysis.

There is no uncertainty that the hypothesis of difference equations will keep on playing a
vital part in science overall.

Nonlinear difference equations of order greater than one are of principal significance in
applications. Such equations likewise normally seem like discrete analogs and numerical ar-
rangements of differential and defer differential equations, showing several assorted wonders
in science, biology, physics, physiology, engineering, and economics.
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As of late, there has been incredible enthusiasm for examining difference equation sys-
tems. One reason for this is the need for a few strategies to investigate equations emerging in
mathematical models portraying genuine. For instance, there are many papers related to the
system of difference equations.

Clark and Kulenović [4] have been investigated the positive solutions behavior of the fol-
lowing system

xn+1 =
xn

a + cyn
, yn+1 =

yn

b + dxn
.

The authors in [20] have obtained the solutions form of the following system of difference
equations

xn+1 =
Axn + yn

xn−p
, yn+1 =

A + xn

yn−q
.

Touafek and Elsayed [25] investigated the periodic nature and gave the form of the solu-
tions to the following systems of rational difference equations

xn+1 =
yn

xn−1(±1± yn)
, yn+1 =

xn

yn−1(±1± xn)
.

Din et al. [5] dealt with the behavior of the solutions of the following fourth-order system
of rational difference equations of the form

xn+1 =
αxn−3

β + γynyn−1yn−2yn−3
, yn+1 =

α1xn−3

β1 + γ1xnxn−1xn−2xn−3
.

The persistence and the asymptotic behavior of positive solutions of the system of two
difference equations of exponential form

xn+1 = a + bxn−1e−yn , yn+1 = c + dyn−1e−xn ,

have been studied by Papaschinopoulos et al. [21].
Yalçınkaya [27] obtained the sufficient conditions for the global asymptotic stability of the

system of two nonlinear difference equations

xn+1 =
xn + yn−1

xnyn−1 − 1
, yn+1 =

yn + xn−1

ynxn−1 − 1
.

Elsayed [9] investigated the expressions of solutions and the periodic nature of the follow-
ing systems of rational difference equations

xn+1 =
xn−3

±1± ynxn−2xn−3
, yn+1 =

yn−3

±1± xnyn−2yn−3
.

Yang et al. [29] studied the global behavior of the system of the two nonlinear difference
equations

xn+1 =
Axn

1 + yp
n

, yn+1 =
Byn

1 + xp
n

.

Camouzis and Papaschinopoulos [2] studied the dynamics of a system of the rational
third-order difference equation

xn+1 = 1 +
xn

yn−m
, yn+1 = 1 +

yn

xn−m
.
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The expression of solutions to the following system of nonlinear difference equations

xn+1 =
f (zn)

yn−1
, yn+1 =

f (xn)

zn−1
, zn+1 =

f (yn)

xn−1
,

has been studied by Williams [26].
Definition (Periodicity).
A sequence {xn}∞

n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.

2 Form of the solutions

Consider the system

xn+1 =
xnyn−1

xn + yn
, yn+1 =

xn−1yn

xn + yn
, n = 0, 1, ..., (2.1)

with the initial values are arbitrary nonzero real numbers with x0 , −y0, x−1 , −y−1 and
x0y−1 , −x−1y0.

In the following result, we realize the form of the solutions of System (2.1).

Theorem 2.1. Let {xn, yn}∞
n=−1 be the solutions of System (2.1). Then for n = 0, 1, 2, ...

x6n = an+1bncndn

(a+c)n(b+d)n(ad+bc)n , y6n = anbncn+1dn

(a+c)n(b+d)n(ad+bc)n ,

x6n+1 = an+1bncndn+1

(a+c)n+1(b+d)n(ad+bc)n , y6n+1 = anbn+1cn+1dn

(a+c)n+1(b+d)n(ad+bc)n ,

x6n+2 = an+1bncn+1dn+1

(a+c)n(b+d)n(ad+bc)n+1 , y6n+2 = an+1bn+1cn+1dn

(a+c)n(b+d)n(ad+bc)n+1 ,

x6n+3 = anbn+1cn+1dn+1

(a+c)n+1(b+d)n+1(ad+bc)n , y6n+3 = anbn+1cn+1dn+1

(a+c)n+1(b+d)n+1(ad+bc)n ,

x6n+4 = an+1bn+1cn+2dn

(a+c)n+1(b+d)n(ad+bc)n+1 , y6n+4 = an+2bncn+1dn+1

(a+c)n+1(b+d)n(ad+bc)n+1 ,

x6n+5 = an+1bn+2cn+1dn+1

(a+c)n+1(b+d)n+1(ad+bc)n+1 , y6n+5 = an+1bn+1cn+1dn+2

(a+c)n+1(b+d)n+1(ad+bc)n+1 ,

where x0 = a, x−1 = b, y0 = c, y−1 = d.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for
n− 1. That is;

x6n−6 = anbn−1cn−1dn−1

(a+c)n−1(b+d)n−1(ad+bc)n−1 , y6n−6 = an−1bn−1cndn−1

(a+c)n−1(b+d)n−1(ad+bc)n−1 ,

x6n−5 = anbn−1cn−1dn

(a+c)n(b+d)n−1(ad+bc)n−1 , y6n−5 = an−1bncndn−1

(a+c)n(b+d)n−1(ad+bc)n−1 ,

x6n−4 = anbn−1cndn

(a+c)n−1(b+d)n−1(ad+bc)n , y6n−4 = anbncndn−1

(a+c)n−1(b+d)n−1(ad+bc)n ,

x6n−3 = an−1bncndn

(a+c)n(b+d)n(ad+bc)n−1 , y6n−3 = an−1bncndn

(a+c)n(b+d)n(ad+bc)n−1 ,

x6n−2 = anbncn+1dn−1

(a+c)n(b+d)n−1(ad+bc)n , y6n−2 = an+1bn−1cndn

(a+c)n(b+d)n−1(ad+bc)n ,

x6n−1 = anbn+1cndn

(a+c)n(b+d)n(ad+bc)n , y6n−1 = anbncndn+1

(a+c)n(b+d)n(ad+bc)n .
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Now, it follows from System (2.1) that

x6n =
x6n−1y6n−2

x6n−1 + y6n−1

=

(
anbn+1cndn

(a + c)n(b + d)n(ad + bc)n

)(
an+1bn−1cndn

(a + c)n(b + d)n−1(ad + bc)n

)
(

anbn+1cndn

(a + c)n(b + d)n(ad + bc)n

)
+

(
anbncndn+1

(a + c)n(b + d)n(ad + bc)n

)

=

(
a2n+1b2nc2nd2n

(a + c)2n(b + d)2n−1(ad + bc)2n

)
(a + c)n(b + d)n(ad + bc)n

anbncndn(b + d)

=
a2n+1b2nc2nd2n

(a + c)n(b + d)n−1(ad + bc)nanbncndn(b + d)

=
an+1bncndn

(a + c)n(b + d)n(ad + bc)n ,

y6n =
y6n−1x6n−2

x6n−1 + y6n−1

=

(
anbncndn+1

(a + c)n(b + d)n(ad + bc)n

)(
anbncn+1dn−1

(a + c)n(b + d)n−1(ad + bc)n

)
(

anbn+1cndn

(a + c)n(b + d)n(ad + bc)n

)
+

(
anbncndn+1

(a + c)n(b + d)n(ad + bc)n

)

=

(
a2nb2nc2n+1d2n

(a + c)2n(b + d)2n−1(ad + bc)2n

)
(a + c)n(b + d)n(ad + bc)n

anbncndn(b + d)

=
a2nb2nc2n+1d2n

anbncndn(a + c)n(b + d)n−1(ad + bc)n

=
anbncn+1dn

(a + c)n(b + d)n(ad + bc)n .

Similarly

x6n+1 =
x6ny6n−1

x6n + y6n

=

(
an+1bncndn

(a + c)n(b + d)n(ad + bc)n

)(
anbncndn+1

(a + c)n(b + d)n(ad + bc)n

)
(

an+1bncndn

(a + c)n(b + d)n(ad + bc)n

)
+

(
anbncn+1dn

(a + c)n(b + d)n(ad + bc)n

)

=

(
a2n+1b2nc2nd2n+1

(a + c)2n(b + d)2n(ad + bc)2n

)
(a + c)n(b + d)n(ad + bc)n

anbncndn(a + c)

=
a2n+1b2nc2nd2n+1

anbncndn(a + c)n+1(b + d)n(ad + bc)n

=
an+1bncndn+1

(a + c)n+1(b + d)n(ad + bc)n ,
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y6n+1 =
y6nx6n−1

x6n + y6n

=

(
anbncn+1dn

(a + c)n(b + d)n(ad + bc)n

)(
anbn+1cndn

(a + c)n(b + d)n(ad + bc)n

)
(

an+1bncndn

(a + c)n(b + d)n(ad + bc)n

)
+

(
anbncn+1dn

(a + c)n(b + d)n(ad + bc)n

)

=

(
a2nb2n+1c2n+1d2n

(a + c)2n(b + d)2n(ad + bc)2n

)
(a + c)n(b + d)n(ad + bc)n

anbncndn(a + c)

=
a2nb2n+1c2n+1d2n

anbncndn(a + c)n+1(b + d)n(ad + bc)n

=
anbn+1cn+1dn

(a + c)n+1(b + d)n(ad + bc)n .

Hence, we have

x6n+2 =
x6n+1y6n

x6n+1 + y6n+1

=

(
an+1bncndn+1

(a + c)n+1(b + d)n(ad + bc)n

)(
anbncn+1dn

(a + c)n(b + d)n(ad + bc)n

)
(

an+1bncndn+1

(a + c)n+1(b + d)n(ad + bc)n

)
+

(
anbn+1cn+1dn

(a + c)n+1(b + d)n(ad + bc)n

)

=

(
a2n+1b2nc2n+1d2n+1

(a + c)2n+1(b + d)2n(ad + bc)2n

)
(a + c)n+1(b + d)n(ad + bc)n

anbncndn(ad + bc)

=
a2n+1b2nc2n+1d2n+1

anbncndn(a + c)n(b + d)n(ad + bc)n+1

=
an+1bncn+1dn+1

(a + c)n(b + d)n(ad + bc)n+1 ,

y6n+2 =
y6n+1x6n

x6n+1 + y6n+1

=

(
anbn+1cn+1dn

(a + c)n+1(b + d)n(ad + bc)n

)(
an+1bncndn

(a + c)n(b + d)n(ad + bc)n

)
(

an+1bncndn+1

(a + c)n+1(b + d)n(ad + bc)n

)
+

(
anbn+1cn+1dn

(a + c)n+1(b + d)n(ad + bc)n

)

=

(
a2n+1b2n+1c2n+1d2n

(a + c)2n+1(b + d)2n(ad + bc)2n

)
(a + c)n+1(b + d)n(ad + bc)n

anbncndn(ad + bc)

=
a2n+1b2n+1c2n+1d2n

anbncndn(a + c)n(b + d)n(ad + bc)n+1

=
an+1bn+1cn+1dn

(a + c)n(b + d)n(ad + bc)n+1 .
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We have

x6n+3 =
x6n+2y6n+1

x6n+2 + y6n+2

=

(
an+1bncn+1dn+1

(a + c)n(b + d)n(ad + bc)n+1

)(
anbn+1cn+1dn

(a + c)n+1(b + d)n(ad + bc)n

)
(

an+1bncn+1dn+1

(a + c)n(b + d)n(ad + bc)n+1

)
+

(
an+1bn+1cn+1dn

(a + c)n(b + d)n(ad + bc)n+1

)

=

(
a2n+1b2n+1c2n+2d2n+1

(a + c)2n+1(b + d)2n(ad + bc)2n+1

)
(a + c)n(b + d)n(ad + bc)n+1

an+1bncn+1dn(b + d)

=
a2n+1b2n+1c2n+2d2n+1

an+1bncn+1dn(a + c)n+1(b + d)n+1(ad + bc)n

=
anbn+1cn+1dn+1

(a + c)n+1(b + d)n+1(ad + bc)n .

y6n+3 =
y6n+2x6n+1

x6n+2 + y6n+2

=

(
an+1bn+1cn+1dn

(a + c)n(b + d)n(ad + bc)n+1

)(
an+1bncndn+1

(a + c)n+1(b + d)n(ad + bc)n

)
(

an+1bncn+1dn+1

(a + c)n(b + d)n(ad + bc)n+1

)
+

(
an+1bn+1cn+1dn

(a + c)n(b + d)n(ad + bc)n+1

)

=

(
a2n+2b2n+1c2n+1d2n+1

(a + c)2n+1(b + d)2n(ad + bc)2n+1

)
(a + c)n(b + d)n(ad + bc)n+1

an+1bncn+1dn(d + b)

=
a2n+2b2n+1c2n+1d2n+1

an+1bncn+1dn(a + c)n+1(b + d)n+1(ad + bc)n

=
an+1bn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n .

Similarly

x6n+4 =
x6n+3y6n+2

x6n+3 + y6n+3

=

(
anbn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)(
an+1bn+1cn+1dn

(a + c)n(b + d)n(ad + bc)n+1

)
(

anbn+1cn+1dn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)
+

(
an+1bn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)

=

(
a2n+1b2n+2c2n+1d2n+1

(a + c)2n+1(b + d)2n+1(ad + bc)2n+1

)
(a + c)n+1(b + d)n+1(ad + bc)n

anbn+1cndn+1(c + a)

=
a2n+1b2n+2c2n+2d2n+1

anbn+1cndn+1(a + c)n+1(b + d)n(ad + bc)n+1

=
an+1bn+1cn+2dn

(a + c)n+1(b + d)n(ad + bc)n+1 ,
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y6n+4 =
y6n+3x6n+2

x6n+3 + y6n+3

=

(
an+1bn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)(
an+1bncn+1dn+1

(a + c)n(b + d)n(ad + bc)n+1

)
(

anbn+1cn+1dn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)
+

(
an+1bn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)

=

(
a2n+2b2n+1c2n+1d2n+2

(a + c)2n+1(b + d)2n+1(ad + bc)2n+1

)
(a + c)n+1(b + d)n+1(ad + bc)n

anbn+1cndn+1(c + a)

=
a2n+2b2n+1c2n+1d2n+2

anbn+1cndn+1(a + c)n+1(b + d)n(ad + bc)n+1

=
an+2bncn+1dn+1

(a + c)n+1(b + d)n(ad + bc)n+1 .

We have,

x6n+5 =
x6n+4y6n+3

x6n+4 + y6n+4

=

(
an+1bn+1cn+2dn

(a + c)n+1(b + d)n(ad + bc)n+1

)(
an+1bn+1cndn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)
(

an+1bn+1cn+2dn

(a + c)n+1(b + d)n(ad + bc)n+1

)
+

(
an+2bncn+1dn+1

(a + c)n+1(b + d)n(ad + bc)n+1

)

=

(
a2n+2b2n+2c2n+2d2n+1

(a + c)2n+2(b + d)2n+1(ad + bc)2n+1

)
(a + c)n+1(b + d)n(ad + bc)n+1

an+1bncn+1dn(bc + ad)

=
a2n+2b2n+2c2n+2d2n+1

an+1bncn+1dn(a + c)n+1(b + d)n+1(ad + bc)n+1

=
an + 1bn+2cn+1dn+1

(a + c)n+1(b + d)n+1(ad + bc)n+1 ,

y6n+5 =
y6n+4x6n+3

x6n+4 + y6n+4

=

(
an+2bncn+1dn+1

(a + c)n+1(b + d)n(ad + bc)n+1

)(
anbn+1cn+1dn+1

(a + c)n+1(b + d)n+1(ad + bc)n

)
(

an+1bn+1cn+2dn

(a + c)n+1(b + d)n(ad + bc)n+1

)
+

(
an+2bncn+1dn+1

(a + c)n+1(b + d)n(ad + bc)n+1

)

=

(
a2n+2b2n+1c2n+2d2n+2

(a + c)2n+2(b + d)2n+1(ad + bc)2n+1

)
(a + c)n+1(b + d)n(ad + bc)n+1

an+1bncn+1dn(bc + ad)

=
a2n+2b2n+1c2n+2d2n+2

an+1bncn+1dn(a + c)n+1(b + d)n+1(ad + bc)n+1

=
an+1bn+1cn+1dn+2

(a + c)n+1(b + d)n+1(ad + bc)n+1 .
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The proof is complete. �

The following two theorems are devoted to the existence of prime periodic solutions of
period twelve.

Theorem 2.2. Suppose that a = −2c, b = d. Then the System (2.1) has a periodic positive solution of
period twelve, taking the following form

{xn} =

{
a, 2d,−a,

−d
2

, a,−b,−a,−2b, a,
b
2

,−a, b, a, 2d, ....
}

,

{yn} =

{
c,−b,−a,

−d
2

,−2a,−d,−c, b, a,
b
2

, 2a, b, c,−b, ....
}

.

Proof. Assume that a = −2c and b = d, then we see the solution of System (2.1) as follows:

x12n = a, x12n+1 = 2d, x12n+2 = −a, x12n+3 =
−d
2

, x12n+4 = a, x12n+5 = −b,

x12n+6 = −a, x12n+7 = −2b, x12n+8 = a, x12n+9 =
b
2

, x12n+10 = −a, x12n+11 = b,

y12n = c, y12n+1 = −b, y12n+2 = −a, y12n+3 =
−d
2

, y12n+4 = −2a, y12n+5 = −d,

y12n+6 = −c, y12n+7 = b, y12n+8 = a, y12n+9 =
b
2

, y12n+10 = 2a, y12n+11 = b.

Thus we have a periodic solution of period twelve and the proof is complete. �

Theorem 2.3. Suppose that a = c, b = −2d . Then the System (2.1) has a periodic positive solution
of period twelve, it will be taken the following form

{xn} =

{
a,

d
2

,−c,
−b
2

, a, 2d,−c,
b
4

, a,−d,−a,−2d, a,
d
2

, ....
}

,

{yn} =

{
c,

b
2

, 2c,
−b
2

,
−a
2

,
b
2

,−a, d,−2a,−d,
a
2

, d, ....
}

.

Proof. Assume that a = c and b = −2d then we see the solution of System (2.1)

x12n = a, x12n+1 =
d
2

, x12n+2 = −c, x12n+3 =
−b
2

, x12n+4 = a, x12n+5 = 2d,

x12n+6 = −c, x12n+7 =
b
4

, x12n+8 = a, x12n+9 = −d, x12n+10 = −a, x12n+11 = −2d,

y12n = c, y12n+1 =
b
2

, y12n+2 = 2c, y12n+3 =
−b
2

, y12n+4 =
−a
2

, y12n+5 =
b
2

,

y12n+6 = −a, y12n+7 = d, y12n+8 = −2a, y12n+9 = −d, y12n+10 =
a
2

, y12n+11 = d.

Thus we have a periodic solution of period twelve and the proof is complete. �

Lemma 2.4. Let {xn, yn}∞
n=−1 be a positive solution of System (2.1), that is xn, yn > 0, n = −1, 0, ...,

then
lim
n→∞

xn = lim
n→∞

yn = 0.
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Proof. Using the fact that

(a + c)(b + d)(ad + bc) = 2abcd + d(b + d)a2 + c(d2 + b2)a + b(b + d)c2,

we get

abcd
(a + c)(b + d)(ad + bc)

<
1
2

,

from which it follows that(
abcd

(a + c)(b + d)(ad + bc)

)n

<
1
2n .

So, it follows that

lim
n→∞

xn = lim
n→∞

yn = 0.

Consider the system

xn+1 =
xnyn−1

xn − yn
, yn+1 =

xn−1yn

xn − yn
, n = 0, 1, ..., (2.2)

with the initial values are arbitrary nonzero real numbers and x0 , y0, x−1 , y−1 and x0y−1 ,

x−1y0.
In the following result, we realize the form of the solutions of System (2.2). �

Theorem 2.5. Let {xn, yn} be the solutions of System (2.2). Assume that x0, x−1, y0 and y−1 are
arbitrary nonzero real numbers with a , c, b , d and ad , bc, then the solutions of System (2.2) are
given by the following formulas for n = 0, 1, 2, ...

x6n = (−1)nan+1bncndn

(a−c)n(b−d)n(ad−bc)n , y6n = (−1)nanbncn+1dn

(a−c)n(b−d)n(ad−bc)n ,

x6n+1 = an+1bncndn+1

(a−c)n+1(b−d)n(ad−bc)n , y6n+1 = anbn+1cn+1dn

(a−c)n+1(b−d)n(ad−bc)n ,

x6n+2 = (−1)nan+1bncn+1dn+1

(a−c)n(b−d)n(ad−bc)n+1 , y6n+2 = (−1)nan+1bn+1cn+1dn

(a−c)n(b−d)n(ad−bc)n+1 ,

x6n+3 = − anbn+1cn+1dn+1

(a−c)n+1(b−d)n+1(ad−bc)n , y6n+3 = − an+1bn+1cndn+1

(a−c)n+1(b−d)n+1(ad−bc)n ,

x6n+4 = (−1)n+1an+1bn+1cn+2dn

(a−c)n+1(b−d)n(ad−bc)n+1 , y6n+4 = (−1)n+1an+2bncn+1dn+1

(a−c)n+1(b−d)n(ad−bc)n+1 ,

x6n+5 = an+1bn+2cn+1dn+1

(a−c)n+1(b−d)n+1(ad−bc)n+1 , y6n+5 = an+1bn+1cn+1dn+2

(a−c)n+1(b−d)n+1(ad−bc)n+1 ,

such that x0 = a, x−1 = b, y0 = c, y−1 = d.

Proof. The proof is similar to that of Theorem 2.1 so it will left to the reader. �

3 Numerical examples

In this section, we shows some numerical examples that confirm the results obtained for
System (2.1) and System (2.2).

Example 3.1. Consider System (2.1) with initial conditions x−1 = 0.52, x0 = 0.9, y−1 =

−0.4, y0 = 0.2, then the solution are unbounded and goes to infinity. (See eqreffig1).
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Figure 3.1: This figure displays the behavior of the solution of the System (2.1) when x−1 =

0.52, x0 = 0.9, y−1 = −0.4, y0 = 0.2

Example 3.2. Consider the System (2.1) with x−1 = 0.5, x0 = −1.8, y−1 = 0.5, y0 = 0.9, then
the solution is periodic with period twelve and takes the form{

(0.5, 0.5), (−1.8, 0.9), (1,−0.5), (1.8, 1.8), (−0.25,−0.25), (−1.8,−1),
(−0.5,−0.5), (1.8,−0.9), (−1, .5), (−1.8,−1.8), (0.25, 0.25), (1.8,−3.6), ...

}
. (See Fig-

ure (3.2)).
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Figure 3.2: This figure shows the periodicity of the solution of the System (2.1) with x−1 =

0.5, x0 = −1.8, y−1 = 0.5, y0 = 0.9.

Example 3.3. Consider the System (2.1) when we put the initial conditions x−1 = 10, x0 =

−1.8, y−1 = −5, y0 = −1.8, then the solution is periodic with period twelve and takes the
form{

(10,−5), (−1.8,−1.8), (−2, 5), (0.5,−3.6), (1.8,−5), (−5, 0.9),
(−1.8, 5), (−10, 1.8), (1.8,−5), (2.5, 3.6), (−1.8, 5), (5,−0.9), ...

}
. (See Figure (3.3)).
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Figure 3.3: This figure shows the periodic solution of period twelve of the system xn+1 =

xnyn−1/(xn + yn), yn+1 = xn−1yn/(xn + yn), when x−1 = 10, x0 = −1.8, y−1 = −5, y0 = −1.8.

Example 3.4. Suppose the difference equations System (2.1) with the positive initial conditions
x−1 = 0.5, x0 = 1.18, y−1 = 0.96, y0 = 0.9. Then the solutions are bounded and converges to
zero (See Figure (3.4)).
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Figure 3.4: his figure shows the boundedness of the solution of the system xn+1 =

xnyn−1/(xn + yn), yn+1 = xn−1yn/(xn + yn), when x−1 = 0.5, x0 = 1.18, y−1 = 0.96, y0 = 0.9.

Example 3.5. Consider the System (2.2) when we choose the initial conditions x−1 = 7, x0 =

5, y−1 = 9, y0 = 0.9, then the solution is bounded (See Figure (3.5)).

Example 3.6. Consider the System (2.2) when we take x−1 = −0.3, x0 = −0.4, y−1 =

−0.4, y0 = −1.4, then the solution is unbounded and goes to infinity (See Figure (3.6)).
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Figure 3.5: This figure shows the boundedness of the solution of the System (2.2), with
x−1 = 7, x0 = 5, y−1 = 9, y0 = 0.9.
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Figure 3.6: This figure displays the unboundedness of the solution of the system xn+1 =

xnyn−1/(xn − yn), yn+1 = xn−1yn/(xn − yn), when x−1 = −0.3, x0 = −0.4, y−1 = −0.4, y0 =

−1.4.
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