Modified projective synchronization of fractional-order hyperchaotic memristor-based Chua’s circuit

Main Article Content

Nadjet Boudjerida
https://orcid.org/0000-0002-8980-7542
Mohammed Salah Abdeloahab
https://orcid.org/0000-0002-9235-8362
René Lozi
https://orcid.org/0000-0003-0451-4255

Abstract

This paper investigates the modified projective synchronization (MPS) between two hyperchaotic memristor-based Chua circuits modeled by two nonlinear integer-order and fractional-order systems. First, a hyperchaotic memristor-based Chua circuit is suggested, and its dynamics are explored using different tools, including stability theory, phase portraits, Lyapunov exponents, and bifurcation diagrams. Another interesting property of this circuit was the coexistence of attractors and the appearance of mixed-mode oscillations. It has been shown that one can achieve MPS with integer-order and incommensurate fractional-order memristor-based Chua circuits. Finally, examples of numerical simulation are presented, showing that the theoretical results are in good agreement with the numerical ones.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Boudjerida, N., Abdeloahab, M.S. and Lozi, R. 2022. Modified projective synchronization of fractional-order hyperchaotic memristor-based Chua’s circuit. Journal of Innovative Applied Mathematics and Computational Sciences. 2, 3 (Dec. 2022), 69–82.
Section
Research Articles
Author Biographies

Nadjet Boudjerida

 

 

Mohammed Salah Abdeloahab

 

 

René Lozi

 

 

References

A. Boulkroune, and M. Msaad, On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign, Fuzzy Sets. Syst., 201(2012), 71-85.

A. Boulkroune, S. Hamel, F. Zouari, and A. Leas, Output-Feedback Controller Based Projective Lag Synchronization of Uncertain Chaotic Systems in the Presence of Input Nonlinearities, Mathematical Problems in Engineering 81(2017), 1-12.

A. Chen, J. Lu, Jinhu Lü , , S. Yu, Generating hyperchaotic Lü attractor via state feedback control, Physica A.,364 (2006), 103-110.

Al-Sawalha, M.M. and Al-Sawalha, A, Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control, Open

Phys., 14(1)(2016), 304-313.

A. Soukkou, and S. Leulmi, Controlling and Synchronizing of Fractional- Order Chaotic Systems via Simple and Optimal Fractional-Order Feedback Controller, International Journal of Intelligent Systems Technologies and Applications., 8 (6)(2016), 56-69.

A. Soukkou, A. Boukabou, and S. Leulmi, Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems, Nonlinear Dynamics 58 (4) (2016), 2183- 2206.

A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determning Lyapunov Exponents from a Time Series, Physica D., 16 (1985), 285-317 .

B. C. Bao, J. P. Xu, Z. Liu, Initial state dependent dynamical behaviors in memristor based chaotic circuit, Chinese Physics Letters, 27(7) (2010), 070504.

B. Muthuswamy, P. P. Kokate, Memristor based chaotic circuits, IETE Technical Review. 26(6) 2009, 415-426.

B. Wang, J. Jian and H. Yu, Adaptive synchronization of fractional-order memristor-based Chuas system, Systems Science(2014), 291-296 .

D. Cafagna, G. Grassi, On the simplest fractional-order memristor-based chaotic system, Nonlinear Dynamics., 70(2)(2012), 1185-1197.

G. Ye and J. Zhou, A block chaotic image encryption scheme based on self-adaptive modelling, Applied Soft Computing., 22(2014), 351-357 .

I. Petráš, Fractional-order memristor-based Chua’s circuit, IEEE Trans. Circuits Syst. II., 57(12) (2010), 975-979.

J. Borghetti, Snider G S, Kuekes P J, et al, Memristive switches enable tateful logic operations via material implication ,64(4)(2010), 873-876.

J. Wang and Z. Chen, A novel hyperchaotic system and its complex dynamics, International Journal of Bifurcation and Chaos., 18(11) (2008), 3309-3324.

K. Diethelm, N.J. Ford and A.D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms., 36 (2004), 31-52.

K. Murali, M. Lakshmanan, Secure communication using a compound signal from generalized chaotic systems, Phys Lett A., 241(6) (1998), 303-310.

L. Jian , L. Shutang and Y. Chunhua, Modified generalized projective synchronization fractional-order chaotic L-systems, Advances in Difference Equations.,2013-374 (2013).

L. Kocarev . and Parlitz, U, General approach for chaotic synchronization with application to communication. Phys. Rev. Lett., 74 (1995), 5028-5031.

L.O. Chua, Memristor, the missing circuit element, IEEE Trans. circuit. Theory., 18 (1971), 507-519.

L. Teng, H. C. Iu Herbert , X. Y. Wang, X. K. Wang, Chaotic behavior in fractional-order

memristor-based simplest chaotic circuit using fourth degree polynomial, Nonlinear Dynamics., 77(1-2) (2014), 231-241.

M-S. Abdelouahab, N-E. Hamri and J. Wang, Hopf bifurcation and chaos in fractional-order modified hybrid optical system, Nonlinear Dynam., 69(1) (2012), 275–284.

M. Abdelouahab, R. Lozi, Hopf bifurcation and chaos in simplest fractional-order memristorsbased electrical circuit, Indian Journal of Industrial and Applied Mathematics, 6(2)(2015), 105-119.

M. Abdelouahab, R. Lozi, L. O. Chua, Memfractance: a mathematical paradigm for circuit

elements with memory, International journal of Bifurcation and Chaos., 24(9)(2014), 1430023 (29 pages).

M. Bharathwaj, Khalil, implementing memristor based chaotic circuit, International Journal of Bifurcation and Chaos, 20 (2010), 1335-350.

M. Itoh, , L. O. Chua,Memristor Oscillators. Int. J. Bifurcation and Chaos., 18(11) (2008), 3183-3206

O. E. Rossler, An equation for hyperchaos, Phys. Lett. A., 71(2-3) (1979), 155-177.

Q. Li, S. Hu, S. Tang and G. Zeng, Hyperchaos and horseshoe in a 4 − D memristive system with a line of equilibria and its implementation, Int. J. Circuit Theory Appl., 42(11) (2014), 1172-1188.

R. Suresh, and V. Sundarapandian, Hybrid synchronization of nscroll Chua and Lure chaotic

systems via backstepping control with novel feedback. Archives of Control Sciences, (3), 343-365(2012).

Sh. Wang, Xi. Wang 1,* and Y. Zhou, A Memristor-Based Complex Lorenz System and Its Modified Projective Synchronization,Entropy ., 17(11) (2015), 7628-7644.

S. Kaouache, M.S. Abdelouahab, Modified Projective Synchronization between Integer Order and Fractional Order Hyperchaotic Systems, Jour of Adv Research in Dynamical and Control Systems,10(5)(2018), 96-104.

S. Rasappan and Y. Li , X. Huang, Y. Song, J. Lin, A new fourth-order memristive chaotic system and its generation, International Journal of Bifurcation and Chaos, 25(11) (2015), 1550151.

S. Shin, Kim K, Kang S M, Memristor applications for programmable analog ICs, IEEE Transactions in Nanotechnology, 10(2)(2011), 266-274(2011).

S. Vaidyanathan, Ch. K. Volos, and V. -T. Pham, Analysis, Control, Synchronization and SPICE Implementation of a Novel 4-D Hyperchaotic Rikitake Dynamo System without Equilibrium, Journal of Engineering Science and Technology Review 8 (2)(2015), 232 - 244.

S. Vaidyanathan, CK. Volos,VT. Pham, Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Engi Sci Technol Rev 8(2),174–184 (2015)

T. I. Chien and T. L. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization, Chaos, Solitons and Fractals (24)(2005), 241-245 .

V. T. Pham, Ch. Volos, and L. V. Gambuzza, A Memristive Hyperchaotic System without Equilibrium. The Scientific World Journal., (2014), 1-9 .

W. Zhen, , H. Xia, and S. Hao, Control of an uncertain fractional order economic system via adaptive sliding mode. Neuro computing., 83(2012), 83-88.

X. Huang, J.Jia, Y. Li and Z. Wang, Complex nonlinear dynamics in fractional and integer order memristor-based systems, Neurocomputing., 218 (2016), 296-06.

Xi. Huiling, L. Yuxia, and X. Huang. Generation and Nonlinear Dynamical Analyses of Fractional-Order Memristor-Based Lorenz Systems,Entropy.,16(12) (2014), 6240-6253.

X.J. Wu, . and Y. Lu, Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics., 57(1-2)(2009), 25-35.

Y V. Pershin, Ventra M D, Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 23(7)(2010), 881-886.

Y. Yu, and H. Li, The synchronization of fractional-order Rossler hyperchaotic systems, Physica

A 387 (5-6)(2008), 1393-1403.

Z. Elhadj, Dynamical Analysis of a 3 − D Chaotic System with only Two Quadratic Nonlinearities, J. Syst. Sci. Complex., 21(1) (2008), 67-75.

Z. Hrubš, T. Gotthans, Analysis and synthesis of chaotic circuits using memristor properies, Journal of electrical engineering„ 65(3) (2014), 129-136.