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Abstract. This paper investigates the modified projective synchronization (MPS) be-
tween two hyperchaotic memristor-based Chua circuits modeled by two nonlinear
integer-order and fractional-order systems. First, a hyperchaotic memristor-based Chua
circuit is suggested, and its dynamics are explored using different tools, including sta-
bility theory, phase portraits, Lyapunov exponents, and bifurcation diagrams. Another
interesting property of this circuit was the coexistence of attractors and the appearance
of mixed-mode oscillations. It has been shown that one can achieve MPS with integer-
order and incommensurate fractional order memristor-based Chua circuits. Finally,
examples of numerical simulation are presented, showing that the theoretical results
are in good agreement with the numerical ones.

Keywords: Memristor; hyperchaotic system; Chua’s circuit; Caputo derivative; incom-
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1 Introduction

In 1971, the circuit theorist Leon Chua had published a study entitled "Memristor: the missing
circuit element". This achievement has attracted a great research attention across a wide range
of disciplines, such as programmable logic [14] and electronics [33] as well as neural net-
works [42]. Because memristors are non-linear components, their application to build chaotic
or hyperchaotic systems has received significant attention in recent decades [9,23,30]. For ex-
ample, the canonical Chua’s circuit has been improved by replacing its diode with a memristor
whose output is monotone-increasing [8]. Both chaotic and hyperchaotic systems are clearly
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defined as nonlinear systems that are highly dependent on initial conditions, unpredictable in
the long run and non-periodic. The fact that hyper-chaotic systems have at least two positive
Lyapunov exponents makes their dynamics more complex. And hence favourable for many
applications. Mainly, for encryption and secure communications [12, 17, 35, 36]. Various mod-
els of commensurate fractional-order memristor-based systems have been designed [11,13,21].
However, because of the different fractional-order characteristics of each circuit component, it
is more important to consider fractional-order circuits or systems with incommensurate frac-
tional order. Meanwhile, synchronization of chaotic and hyperchaotic systems has become
a crucial research domain, especially in secure communication [19]. Various techniques have
been proposed for the synchronization of chaotic systems, such as Active control [31], adaptive
control [4, 35], Feedback control, Prediction based feedback control, Sliding mode control and
adaptive fuzzy control [2,5,6,10,31,34,38]. Using these methods, many works for the synchro-
nization problem have been extended to the scope, such as phase synchronization, complete
synchronization, anti-synchronization, projective synchronization, generalized projective syn-
chronization, inverse hybrid function projective synchronization, generalized synchronization
and MPS [4, 18, 29, 31, 41, 43], but there are few studies on the MPS between integer-order and
incommensurate fractional order hyperchaotic systems.
Motivated by the precedent reasons, a hyperchaotic memristor-based Chua’s circuit is sug-
gested, and its dynamics are explored using different tools, including stability theory, phase
portraits, Lyapunov exponents, and bifurcation diagrams. Then, using an active control strat-
egy, the problem of MPS between integer-order and incommensurate fractional order hyper-
chaotic memristor-based systems is explored, and synchronization is proved using the Lya-
punov stability theory of fractional systems.
The present paper is organized as follows: in section 2, a mathematical model of the memristor
is described, and the Caputo fractional derivative is discussed. In section 3, a novel memristor-
based hyperchaotic system is introduced and its dynamical behavior is investigated. MPS
between integer-order and incommensurate fractional order hyperchaotic systems is applied
using the active control method in section 4. To illustrate the theoretical results, numerical
simulations are presented using MATLAB programs. Finally, in the last section, this study
concludes with a summary of the accomplished results and a conclusion.

2 Preliminaries

2.1 Basic memristor model

A memristor is a nonlinear resistor with a memory effect that can be either flux-controlled or
charge-controlled [8]. It can be defined as a dual-terminal device having the relationship

f (φ, q) = 0.

Equations (2.1) and (2.2) describe a charge-controlled and a flux-controlled memristor, respec-
tively [20, 26]

M(q) =
dφ(q)

dq
, v = M(q)i, (2.1)

W(φ) =
dq(φ)

dφ
, i = W(φ)v, (2.2)
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Figure 2.1: Modified memristor-based Chua’s circuit

Where φ denotes the magnetic flux and q the charge, W(φ) and M(q) are called the memduc-
tance and memristance respectively.
This study considers a flux-controlled memristor whose characteristics are described by a
piecewise quadratic function q(φ) given by

q(φ) = −aφ + 0.5bφ|φ|.

With a and b being positive parameters.
Hence, its memductance function is

W(φ) =
dq(φ)

dφ
= −a + b|φ|.

2.2 Caputo fractional derivative

Definition 2.1. The Caputo fractional derivative of order α of a continuous function f :
R+ 7→ R is defined by:

Dα
t f (t) =


1

Γ(m−α)

∫ t
0

f (m)(τ)
(t−τ)α−m+1 dτ, m − 1 < α < m,

dm

dtm f (t), α = m,

where m = ⌈α⌉, and Γ is the Γ-function defined by

Γ(z) =
∫ +∞

0
e−ttz−1dt, Γ(z + 1) = zΓ(z).

Theorem 2.2. Consider the incommensurate fractional order system

Dαi xi = f (x1, x2, ..., xn, t), i = 1, 2, ..., n, (2.3)

Where α1 , α2 , ... , αn. Suppose that m is the least common multiple of the denominators ui’s
of αi’s, where αi =

vi
ui

, ui, vi ∈ Z+ for i = 1, 2, ..., n. Denote γ = 1
m and J be the Jacobian matrix

J = d f
dx evaluated at the equilibrium, where f = [ f1, f2, ..., fn]T, x = [x1, x2, ..., xn]T. System (2.3) is

asymptotically stable if |arg(λi)| > γ π
2 is satisfied for all roots λi of the following equation :

det(diag([λmα1 , λmα2 , ..., λmαn ])− J) = 0, (2.4)
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3 Building a memristor-based system and its analysis

In this section, an alternative memristor-based Chua’s circuit is proposed by replacing the non-
linear diode in the original circuit with a negative conductance and a passive flux-controlled
memristor described by (2.2) in parallel and changing the inductance’s position that becomes
between the two capacitances as shown in Figure 2.1.
Kirchhoff Laws allow us to describe the suggested circuit theoretically by the following four-
dimensional differential system

dV1(t)
dt

=
1

C1
[IL(t) + GV1(t)− W (ϕ)V1(t)] ,

dV2(t)
dt

=
1

C2

[
V2(t)

R
− IL(t)

]
,

dIL(t)
dt

=
1
L
[−V1(t) + V2(t)− RL IL(t)] ,

dϕ(t)
dt

= V1(t),

(3.1)

where W(ϕ) is defined by (2.2) and Vi, i = 1.2 voltages, R, RL and G resistances, Ci, i = 1.2
capacitances, IL current, L the inductance and ϕ the magnetic flux through the memristor.

By setting x = V1, y = V2, z = IL, ω = ϕ, C2 = 1, R = 1, α =
1

C1
, β =

1
L

, γ =
RL

L
and ξ = G

then (3.1) can be converted into its dimensionless form

ẋ = α[z + ξx − (−a + b|ω|)x],

ẏ = y − z,

ż = −β(x − y)− γz,

ẇ = x,

(3.2)

where x, y, z and ω are the states and α, β, γ, ξ, a and b are assumed to be positive constant
parameters.

3.1 Stability analysis

The equilibrium points of system (3.2) are its solutions, taking each equation of the system
equal to zero. Thus, the following equilibrium points are obtained

Pe = {(x, y, z, ω); x = 0, y = 0, z = 0 and ω = ωe ∈ R} . (3.3)

Hence, each point on the ω − axis is an equilibrium point of (3.2), and (3.3) is called the
equilibrium set.
The Jacobian matrix at each equilibrium point Pe is

J(Pe) =


α(ξ − W(we)) 0 α 0

0 1 −1 0

−β β −γ 0

1 0 0 0

 (3.4)
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The characteristic polynomial of the system (3.2) is given by

P(λ) = λ
[
λ3 + [γ − 1 − α(ξ − W(we))]λ2 + [(−γ + 1)α(ξ − W(we)) + (1 + α)β − γ]λ

+α[(γ − β)(ξ − W(we))− β]] = λQ(λ). (3.5)

Setting the system parameters as

α = 5, β = 5, γ = 0.11, ξ = 3, a = 1.5, b = 1 and W(ωe) = −a + b|ωe|. (3.6)

Then, the characteristic polynomial (3.5) becomes

P(λ) = λQ(λ)

= λ
[
λ3 + (5 |we| − 23.4) λ2 + (50.15 − 4.5 |we|) λ + 24.5 |we| − 135.25

]
= 0. (3.7)

In order to find the range ωe for which the system (3.2) has a three-dimensional stable
manifold (Regardless of the eigenvalue being zero), one applies Routh-Hurwitz stability cri-
terion to Q(λ). So, all its roots have negative real parts if and only if the following conditions
are satisfied 

5 |we| − 23.4 > 0,

24.5 |we| − 135.25 > 0,

−22.5 |we|2 + 331.55 |we| − 1038.3 > 0,

(3.8)

Hence,
5.5204 < |we| < 10.221,

In contrast, chaos has a greater possibility of occurrence if (3.7) has one or more roots with
positive real parts, that is

|we| < 5.5204, or |we| > 10.221. (3.9)

According to the above results, we deduce that the initial value of the state variable ω(t)
can affect considerably the dynamical behavior of the system (3.2).

3.2 Bifurcation and Lyapunov Exponents spectrum

3.2.1 Dynamical behaviors versus the parameter a

In this section, the parameters take the following values α = 5, β = 5, γ = 0.1, b = 1, ξ = 3
and let a vary over a certain interval to discuss the complex dynamics of the system (3.2)
with the initial condition (x, y, z, w0) = (−0.5, 0.1, 0.01,−1). The bifurcation diagram of y and
the corresponding Lyapunov exponents spectrum for a varying from 0 to 6 with a step size
h = 0.001 are obtained as depicted in Figure 3.1 and Figure 3.2, respectively, which are in
good coincidence.

From these figures it is obvious that system (3.2) displays period 1 orbit for a ∈]0.02, 1.41[∪]2.04, 3.24[.
For a ∈]1.41, 2.1[∪]3.24, 6[ system (3.2) demonstrates chaotic and hyperchaotic behavior.

In particular, for a = 3 the Lyapunov exponents are

L1 ≈ 0.1417, L2 ≈ 0.0942, L3 ≈ 0.042, L4 ≈ −52.2119. (3.10)
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Figure 3.1: Bifurcation diagram with respect to the parameter a for w0 = −1
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Figure 3.2: The three largest Lyapunov exponents of the system (3.2) versus the parameter a
for w0 = −1
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Since L1 + L2 + L3 + L4 = −51.9719 < 0, L1 > 0, L2 > 0, then the system (3.2) is hyper-
chaotic. The Kaplan-Yorke dimension of its attractor is

DKY ≈ 3 +
L1 + L2 + L3

|L4|
= 3 +

0.1417 + 0.0942 + 0.042
51.2119

= 3.0046, (3.11)

which is a fractal dimension.

3.2.2 Dynamical behaviors versus the initial state w0

In the aim to study the impact of initial condition values on the dynamical behavior of the
system (3.2), for the set of parameter values (7), different diagrams are presented to identify
chaos.
Considering the initial condition (x, y, z, w0) = (−0.5, 0.1, 0.01, w0), the Lyapunov exponents
spectrum and the corresponding bifurcation diagram of y, for w0 varying from −15 to 15
with step 0.01 are obtained as shown in Figure 3.4 and Figure 3.5, respectively. From these
diagrams, one observes that when the value of initial state w0 belongs to the following four
intervals: [−15,−11.91], [−5.52,−0.9] , [0.9, 5.52] , [11.91, 15], then system (3.2) exhibits chaos.
Furthermore, the two diagrams indicate symmetry versus w0 = 0.

Particularly, for w0 = −1 the Lyapunov exponents are [7]

L1 = 0.1485, L2 = 0.0420, L3 = −0.0154, L4 = −31.7725. (3.12)

Since L1 + L2 + L3 + L4 = −31.5975 < 0, L1 > 0, L2 > 0, then the system (3.2) is hyper-
chaotic. The Kaplan-Yorke dimension of its attractor is

DKY = 3 +
L1 + L2 + L3

|L4|
= 3 +

0.1485 + 0.0420 − 0.0154
31.7725

= 3.0055, (3.13)

which is a fractal dimension.
Some phase portraits are depicted in Figure 3.3 for different values of the initial condition
w0. In particular, a period-1 orbits are shown in 3.3(b), 3.3(e), and 3.3(h). Moreover, 3.3(c),
3.3(g) represents a stable equilibrium point, and 3.3(a), 3.3(d), 3.3(f) and 3.3(i) displays chaotic
attractors.
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Figure 3.3: Some attractors for different values of initial condition w0 : (a) w0 = −13, (b)
w0 = −10.22, (c) w0 = −7.52, (d) w0 = −3, (e) w0 = 0.6, (f) w0 = 4, (g)

4 Modified projective synchronization between integer-order and
incommensurate fractional order hyperchaotic systems

This section presents a theoretical analysis of the modified projective synchronization between
integer-order and incommensurate fractional order hyperchaotic systems by applying the ac-
tive control method based on the stability theorem of fractional-order linear systems.

4.1 Theoretical analysis

Giving two hyperchaotic systems: master and slave described respectively by :

Ẋ = F(X), (4.1)

DαY = G(Y), (4.2)

in order to make the study easier, (4.2) is rewritten as:

DαY = AY + g(Y) + U, (4.3)

where X(t) = (x1, x2, ..., xn), Y(t) = (y1, y2, ..., yn) are states of the master and the slave
systems, respectively, α = (α1, α2, ..., αn) where 0 < αi < 1 is the fractional-order,
A ∈ Rn×n, g are the linear part and the nonlinear part of the system (4.3), respectively, and
U = (u1, u2, ..., un) is a control input vector.
The error state is defined as:
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Figure 3.4: Bifurcation diagram with respect to the fourth coordinate w0 of initial condition
for b = 1
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e(t) = CY − X. (4.4)

Where C = diag(c1, c2, ..., cn) denotes a scaling matrix. The objective of our work is to
achieve synchronization between the two hyperchaotic systems (4.1) and (4.2) which could be
achieved using the MPS technique when:

lim
t→+∞

e(t) = lim
t→+∞

∥CY(t)− X(t)∥= 0. (4.5)

Hence the error system from equations (4.1) and (4.3) is as follows:

Dαe = CDαY − DαX, (4.6)

= CAY + Cg(Y) + CU − DαX. (4.7)

In order to realize the MPS between integer order and incommensurate fractional order
hyperchaotic systems, an active control U is chosen whereas the error system (4.4) asymp-
totically converges to zero. To achieve the stability of the system, we take the active control
U = (u1, u2, ..., un)T, such that:

U = C−1((A + M)e − CAY − Cg(Y) + DαX), (4.8)

where M ∈ Rn×n is a gain matrix to be determined.
Substituting (4.8) into (4.7)yields :

Dαe = (A + M)e. (4.9)

Proposition 4.1. If the matrix M is selected such that all roots λi of the characteristic equation:

det(diag([λmα1 , λmα2 , ..., λmαn ])− (A + M)) = 0,

satisfy |arg(λi)| > π
2m , i = 1, 2, ..., n, where m is the least common multiple of the denominators of αi,

then the master system (4.1) and slave system (4.3) can be synchronized under the controller (4.8).

Proof. Immediately, using theorem 2.2. □

4.2 Numerical example and simulation results

To confirm the theoretical results obtained in the above sections, we perform numerical simu-
lation by adopting the novel hyperchaotic system as a master system and its incommensurate
fractional order version as a slave system.
The master system is defined as

ẋ1 = α[x3 + ξx1 − (−a + b|ω|)x1],

ẋ2 = x2 − x3,

ẋ3 = −β(x1 − x2)− γx3,

ẋ4 = x1,

(4.10)
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The slave system is expressed by

Dα1 y1 = α[y3 + ξy1 − (−a + b|ω|)y1] + u1,

Dα2 y2 = y2 − y3 + u2,

Dα3 y3 = −β(y1 − y2)− γy3 + u3,

Dα4 y4 = y1 + u4,

(4.11)

where u1, u2, ..., u4 are the active control functions, and α is a rational number between 0
and 1. The linear part of the system (4.3) is given by

A =


α(a + ξ) 0 α 0

0 1 −1 0

−β β −γ 0

1 0 0 0

 (4.12)

The matrix C is picked out in agreement with the MPS control technique proposed in
equation (4.4) then

C = diag(5, 10, 0.1, 12), (4.13)

and the gain matrix M is chosen as

M =


−αξ − 2αa 0 1 − α 0

0 −2 1 0

β −β −γ 0

−1 0 0 −1

 (4.14)

With the values given in (4.8) and (4.14), the error system becomes


Dα1 e1

Dα2 e2

Dα3 e3

Dα4 e4

 =


−αa 0 1 0

0 −1 1 0.11

0 0 −γ 0

−1.5 0 0 −1




e1

e2

e3

e4

 (4.15)

and the characteristic equation:

det(diag([λmα1 , λmα2 , λmα3 , λmα4 ])− (A + M)) = 0, (4.16)

it can be transformed to:

(λmα1 + 7.5)(λmα2 + 1)(λmα3 + 0.11)(λmα4 + 1) = 0, (4.17)

Where m is the least common multiple of the denominators of αi, for i = 1, 2, 3 and 4, the
master system (4.10) and the slave system (4.11) are synchronized if all roots λ of (4.17) satisfy
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Figure 4.1: Some chaotic attractors of novel incommensurate fractional order system (4.11)

|arg(λi)| > π
2m .

Let us take (α, β, ξ, a, γ) = (5, 5, 3, 1.5, 0.11) and (α1, α2, α3, α4) = (0.95, 1, 1, 1), substituting
in (4.17) yields:

(λ19 + 7.5)(λ20 + 1)(λ20 + 0.11)(λ20 + 1) = 0, (4.18)

Obviously, all roots λi of (4.18) must satisfy the condition |arg(λi)| > π
40 , consequently the

master system (4.10) and the slave system (4.11) are synchronized, under the controller (4.8).

Finally, for numerical simulation, the Adams method [16] is used to solve the systems with
time step size h = 0.02, the error system has the initial values:

e1(0) = 0.1, e2(0) = 0.2, e3(0) = 0.1, e4(0) = −1.

The parameter values of the hyperchaotic systems are taken as in the hyperchaotic case
(??) and the different fractional-orders are taken as:

(α1, α2, α3, α4) = (0.95, 1, 1, 1).

Figure 4.1 illustrates the attractors of the novel incommensurate fractional order system
(4.11).
Figure 4.2 illustrates the synchronization errors between integer-order and incommensurate
fractional order systems.
Figure 4.3 illustrates the error functions evolution (4.15).
From Figure 4.3, for the given parameters, numerical results clearly show that errors converge
to zero, and so the MPS is effectively implemented under the controller (4.8).



MPS of fractional-order hyperchaotic memristor-based Chua’s circuit 81

0 10 20 30 40 50 60 70 80

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
e

1
 

0 10 20 30 40 50 60 70 80

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

e
2
 

0 10 20 30 40 50 60 70 80

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

e
3
 

0 10 20 30 40 50 60 70 80

t

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

e
4
 

Figure 4.2: Synchronization errors between integer order and incommensurate fractional order
systems

5 Conclusion

The synchronization between integer-order and fractional-order versions of a new memristor-
based circuit with hyperchaotic dynamics was examined in this study. In order to derive the
dynamical analysis, the stability theorems for fractional-order systems were applied, and the
findings show that the variation of the fractional-order derivative significantly affects the pro-
posed model’s dynamical behavior. An MPS controller for synchronizing two hyperchaotic
systems with integer and incommensurate fractional orders has been developed. Some nu-
merical simulations have been provided to illustrate the theoretical results. We will use the
proposed memristor-based hyperchaotic circuit for secure communication in the future by
modulating the original signals into the chaotic sequences generated by the master circuit
and transferring the combined signals to the receiver over a communication channel. Signals
are received, and the MPS controller decodes them using the slave memristor-based circuit.
Therefore, the relevant research is still in its early stages, and our next articles will discuss
circuit implementations.
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Figure 4.3: The synchronization errors of (4.10) and (4.11)
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