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Abstract. In this paper, we consider a two-patch model coupled by migration terms,
where each patch follows a Richards law. First, we prove the global stability of the
model. Second, in the case when the migration rate tends to infinity, the total carrying
capacity is given, which in general is different from the sum of the two carrying ca-
pacities and depends on the parameters of the growth rate and also on the migration
terms. Using the theory of singular perturbations, we give an approximation of the
solutions of the system in this case. Finally, we determine the conditions under which
fragmentation and migration can lead to a total equilibrium population which might
be greater or smaller than the sum of two carrying capacities and we give a complete
classification for all possible cases. The total equilibrium population formula for a
large migration rate plays an important role in this classification. We show that this
choice of local dynamics has an influence on the effect of dispersal. Comparing the
dynamics of the total equilibrium population as a function of the migration rate with
that of the logistic model, we obtain the same behavior. In particular, we have only
three situations that the total equilibrium population can occur: it is always greater
than the sum of two carrying capacities, always smaller, and a third case, where the
effect of dispersal is beneficial for lower values of the migration rate and detrimental
for the higher values. We end by examining the two-patch model where one growth
rate is much larger than the second one, we compare the total equilibrium population
with the sum of the two carrying capacities.

Keywords: Population dynamics, Richards Model, Asymmetric dispersal, Singular
Perturbation.
2020 Mathematics Subject Classification: 92B05, 92D25, 34D15, 34D05.

1 Introduction

Population dynamics is a wide field of mathematics, which contains many problems, among
them the effect of migration on the general dynamics of the population. Bibliographies can
be found in the work of Levin [18, 19] and Holt [15]. There are ecological situations that
motivate the representation of space as a finite set of patches connected by migrations, for
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instance, an archipelago with bird populations and predators. It is an example of insular
biogeography. A reference work on mathematical models is the book of Levin, Powell and
Steele [20], whereas Hanski and Gilpin [13] give a more ecological account of the subject.
The standard question in this type of biomathematical problem is to study the effect of
migration on the general population dynamics, and the consequences of fragmentation on
the persistence or extinction of the population.

The simplest realistic model of population dynamics is the one with exponential growth

dx
dt

= rx,

where r is the intrinsic growth rate. To remove unrestricted growth, Verhulst [33] considered
that a stable population would have a saturation level characteristic of the environment. To
achieve this the exponential model was augmented by a multiplicative factor 1 − x

K , which
represents the fractional deficiency of the current size from the saturation level K. In Lotka’s
analysis [21] of the logistic growth concept, the rate of population growth dx/dt, at any
moment t is a function of the population size at that moment, x(t), namely,

dx
dt

= f (x).

Since a zero population has zero growth, x = 0 is an algebraic root of the function f (x). By
expanding f as a Taylor series near x = 0 and setting f (0) = 0, Lotka obtained the following
power series: f (x) = x( f ′(0) + x

2 f ′′(0)), where higher terms are assumed negligible. By
setting f ′(0) = r and f ′′(0) = −2r/K , where r is the intrinsic growth rate of the population
and K is the carrying capacity, one is led to the Verhulst logistic equation

dx
dt

= rx
(

1 − x
K

)
. (1.1)

Turner and co-authors [32] proposed a modified Verhulst logistic equation (1.1) which they
termed the generic growth function. It has the form

dx
dt

= rx1+µ2(1−µ3)
[
1 −

( x
K

)µ2
]µ3

, (1.2)

where µ2, µ3 are positive exponents and µ2 < 1 + 1
µ3

.
Blumberg [4] introduced another growth equation based on a modification of the Ver-

hulst logistic growth equation (1.1) to model population dynamics or organ size evolution.
Blumberg observed that the major limitation of the logistic curve was the inflexibility of the
inflection point. Blumberg, therefore, introduced what he called the hyperlogistic function,
accordingly

dx
dt

= rxµ1
(

1 − x
K

)µ3
. (1.3)

Blumberg’s equation (1.3) is consistent with the Turner and co-author’s generic equation (1.2)
when µ1 = 2 − µ3, µ3 < 2, and µ2 = 1. Von Bertalanffy [3] introduced his growth equation
to model fish weight growth. He proposed the form given below which can be seen to be a
special case of the Bernoulli differential equation:

dx
dt

= rx
2
3

[
1 −

( x
K

) 1
3
]

. (1.4)
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The Turner model does not contain the Bertalanffy one, as the values of the exponents µ1 =
2/3, µ2 = 1/3, µ3 = 1, violate the condition µ1 = 1 + µ2(1 − µ3) stipulated by Turner et al.
[32]. It cannot therefore be seen as a special case of Blumberg’s equation (1.3). Richards [27]
extended the growth equation developed by Von Bertalanffy to fit empirical plant data.

Richards’s suggestion was to use the following equation which is also a Bernoulli differ-
ential equation

dx
dt

= rx
[
1 −

( x
K

)µ2
]

. (1.5)

Unlike its Von Bertalanffy antecedent however, the Richards growth function does follow
from the Turner model (1.2) in the case where µ3 = 1. For µ2 = 1, (1.5) trivially reduces to
the Verhulst logistic growth equation (1.1), but for µ2 > 1 the maximum slope of the curve
is when x > K/2, and when 0 < µ2 < 1, the maximum slope of the curve is when x < K/2.
This allows a wider range of curves to be produced, but as µ2 tends towards zero, the lowest
value of x at the point of inflexion remains greater than K/e, where e represents the universal
constant, the base of the natural logarithm. In fact, as µ2 tends towards zero the Richards
growth curve tends towards the Gompertz growth curve, which can be derived from the
following form of the logistic equation as a limiting case:

dx
dt

=
r

µ2
µ3

x
[
1 −

( x
K

)µ2
]µ3

=
r

Kµ2µ3
x
(

Kµ2 − xµ2

µ2

)µ3

.

When µ2 → 0, we obtain the growth rate modeled by the Gompertz function given by:

dx
dt

= rx
[
ln
( x

K

)]µ3
, (1.6)

with µ3 > 0 and µ3 , 1. This special case is more usually known as the hyper Gompertz,
generalized ecological growth function, or simply generalized Gompertz function. For µ3 = 1
the equation (1.6) is the ordinary Gompertz growth ( see [12, 24]).

In [31], Tsoularis et al. proposed a new growth rate that includes all the previous growth
rates given by:

dx
dt

= rxµ1
[
1 −

( x
K

)µ2
]µ3

, (1.7)

where µ1, µ2 and µ3 are positive real numbers. Unlike Lotka’s derivation of the Verhulst
logistic growth equation from the truncation of the Taylor series expansion of f (x) near
x = 0, (1.7) cannot be derived from such an expansion unless µ1, µ2 and µ3 are all positive
integers.

In 1977, Freedman and Waltman [9] consider a two-patch model with a single species in
logistic population growth as follows:

dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(x2 − x1),

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m(x1 − x2),

(1.8)

where xi represents the population density in patch i, the parameter ri is the intrinsic growth
rate, Ki is carrying capacity and m is the dispersal rate. Freedman and Waltman show that
under certain conditions, the total population abundance can be larger than the total carrying
capacities K1 +K2. Holt [15] generalized these results to a source-sink system. In 2015, Arditi
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et al. [1] gave a full mathematical analysis of the model (1.8) of Freedman and Waltman with
symmetric dispersal.

In 2018, Arditi et al. [2] extended the model (1.8) by considering asymmetric dispersal,
i.e. the model: 

dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m(m21x1 − m12x2),

(1.9)

where mm12 and mm21 with mij > 0, i , j and m ≥ 0, are the migration terms which describe
the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2
respectively. These flows can for example depend on the distance between the patches. By
noting that the positive equilibrium (x∗1 , x∗2) of model (1.9) is the unique positive solution to

r1x1

(
1 − x1

K1

)
+ r2x2

(
1 − x2

K2

)
= 0,

x2 = 1
m12

(
m21x1 − r1

m x1

(
1 − x1

K1

))
,

i.e., the intersection of an ellipse and a parabola, they used a graphical method to completely
analyze model (1.9) in order to determine when dispersal is either favorable or unfavorable
to total population abundance ( see Appendix B).

Wu et al. [35] studied the following two-patch source-sink model:
dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(x2 − sx1),

dx2

dt
= r2x2

(
−1 − x2

K2

)
+ m(sx1 − x2),

(1.10)

where the parameter s reflects the dispersal asymmetry. The authors show that the dispersal
asymmetry can lead to either an increased total size of the species population in two patches,
a decreased total size with persistence in the patches, or even extinction in both patches.
They show also that for a large growth rate of the species in the source and a fixed dispersal
intensity:

• If the asymmetry is small, the population would persist in both patches and reach
a density higher than that without dispersal, in which the population approaches its
maximal density at an appropriate asymmetry.

• If the asymmetry is intermediate, the population persists in both patches but reaches a
density less than that without dispersal.

• If the asymmetry is large, the population goes to extinction in both patches, and asym-
metric dispersal is more favorable than symmetric dispersal under certain conditions.

Kang et al. [16] have considered a two-patch model with Allee effect and dispersal:{
dx1
dt = r1x1 (x1 − θ) (1 − x1) + m(x2 − x1),

dx2
dt = r2x2 (x2 − θ) (1 − x2) + m(x1 − x2),

(1.11)

where x1 and x2 denote the population density in two patches. The parameters m ∈ [0, 1]
and θ represent the dispersal intensity and Allee threshold, respectively. It was shown that
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the dispersal parameter m and the Allee threshold θ will affect the global dynamics. Another
important two-patch model with additive Allee effect is proposed and studied in [5], given
by: 

dx1

dt
= −x1 + m(m12x2 − m21x1),

dx2

dt
= x2

(
1 − x2 −

σ

x2 + a

)
+ m(m21x1 − m12x2),

(1.12)

where the positive parameters σ and a are the Allee effect constants. Note that, the additive
Allee effect consists of two cases, i.e., weak and strong Allee effects. That is, if 0 < σ < a, it
is the weak Allee effect; if σ > a, it is the strong Allee effect. The authors show that dispersal
and Allee effect may lead to persistence or extinction in both patches. Also, by mathematical
analysis with numerical simulation, they verified that the total population abundance will
increase when the Allee effect constant a increases or σ decreases. And the total population
density increases when the dispersal rate m12 increases or the dispersal rate m21 decreases.
The reader may refer to [16, 22, 23, 25, 28] for more references and details on the effects of
dispersal on the total population in discrete space additive Allee effect. For more details
and information on the maximization of the total population with logistic growth in a multi-
patchy environment, the reader is referred to [7, 8, 11] and the references therein.

This paper is organized as follows: in Section 2, we introduce Richard’s model in two
patches. Next, in Section 3, we study the behavior of the system (2.1) in the case when the
migration rate goes to infinity using perturbation arguments. In Section 4, we compare the
total equilibrium population with the sum of the two carrying capacities for all parameter
space by using the same method as Arditi et al. [2]. In Section 5, two-patch model (2.1)
where one growth rate is much larger than the second one is considered, we compare the
total equilibrium population with the sum of two capacities in this case. In Appendix A,
we analyze the existence of equilibrium point by geometrical method and we prove also the
global stability of the system (2.1) and in Appendix B, we recall some result on two-patch
logistic model.

2 Two-patch Richards model

Taking the case of two patches, coupled by asymmetric migration terms, and assuming that
each patch follows the same Richards law (1.5), the two-patch Richards model can be written
in the following form:

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

[
1 −

(
x2

K2

)µ]
+ m(m21x1 − m12x2),

(2.1)

where xi is the population in the patch i, the parameters ri and Ki are respectively the in-
trinsic growth rate and the carrying capacity in the patch i, and µ is a positive number. The
parameters mm12 and mm21 with m12 > 0 and m21 > 0, represent the migration terms which
describe the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the
patch 2 respectively. For µ = 1, the system (2.1) trivially reduces to Two-patch logistic model
(1.9). Note that the system (1.9) is studied in [1, 6, 9, 10, 15] in the case where the migration
rates satisfy m12 = m21, and in [2, 26] for general migration rates. Model (2.1) has always a



46 B. Elbetch

unique positive equilibrium, again denoted by E∗(m) := (x∗1(m), x∗2(m)) which satisfies
0 = r1x∗1(m)

[
1 −

(
x∗1(m)

K1

)µ]
+ m(m12x∗2(m)− m21x∗1(m)),

0 = r2x∗2(m)

[
1 −

(
x∗2(m)

K2

)µ]
+ m(m21x∗1(m)− m12x∗2(m)).

The equilibrium E∗ is GAS in R2 \ {0} (see Appendix A). We thus define the total equilibrium
population at the positive equilibrium under dispersal rate , i.e.

X∗
T(m) = x∗1(m) + x∗2(m), (2.2)

as the total realized asymptotic population abundance.
The main aim of this paper is to study the effect of population dispersal on total popula-

tion size and to perform the mathematical analysis of the two-patch Richards model (2.1) in
the full parameter space. Thus, we extend [1, 2] by considering the case µ , 1.

3 The behavior of the model for a large migration rate

In this section, we aim to study the behavior of the system (2.1) for a large migration rate,
i.e. when m → ∞. We have the following result:

Theorem 3.1. Let E∗(m) be the positive equilibrium of the system (2.1). We then have :

lim
m→∞

E∗(m) =

 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2

 1
µ

(m12, m21) . (3.1)

Proof. Denote E∗(∞) the limit (3.1). The equilibrium point E∗(m) of the system (2.1) is the
solution of the equation Fm = 0, where:

Fm(x1, x2) =
(

r1x1

[
1 −

(
x1
K1

)µ]
+ r2x2

[
1 −

(
x2
K2

)µ]
, r2x2

[
1 −

(
x2
K2

)µ]
+ m(m21x1 − m12x2)

)
.

(3.2)
When m → ∞, Equation (3.2) becomes:

F∞(x1, x2) =
(

r1x1

[
1 −

(
x1
K1

)µ]
+ r2x2

[
1 −

(
x2
K2

)µ]
, m21x1 − m12x2

)
. (3.3)

The solutions of the equation F∞ = 0 are given by 0 and E∗(∞). Therefore, to prove the
convergence of E∗(m) to E∗(∞), it suffices to prove that the origin cannot be a limit point of
E∗(m). We claim that for any m, there exists i ∈ {1, 2} such that x∗i (m) ≥ Ki, which entails
that E∗(m) is bounded away from the origin. If m12x∗2(m) ≤ m21x∗1(m) then we have

r2x∗2(m)

[
1 −

(
x∗2(m)

K2

)µ]
≤ 0,

and since x∗2 cannot be negative or 0, we have x∗2(m) ≥ K2. Therefore, E∗(m) → E∗(+∞) as
m → ∞. □

As a first corollary of the previous theorem we obtain the following result which describes
the total equilibrium population when m → ∞:
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Corollary 3.2. Consider the total equilibrium population (2.2). We have:

X∗
T(+∞) = (m12 + m21)

 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2

 1
µ

. (3.4)

Notice that, the formula (3.4) shows that the total equilibrium population depends on the
migration terms m12, m21 and the parameter µ . For µ = 1, this formula was obtained for the
2-patch logistic model (1.9) by Freedman and Waltman [10, Theorem 1]. It was also obtained
by Arditi et al. [1, Formula (A.13)]. If the migration is symmetric (i.e. m12 = m21 ), then the
total equilibrium population (3.4) does not depend on the flux of migration m12 and m21 and
(3.4) becomes:

X∗
T(+∞) = 2

 r1 + r2
r1
Kµ

1
+ r2

Kµ
2

 1
µ

.

In [1], Arditi et al. also obtained the formula (3.4), in the 2-patch case with logistic model
and symmetric migration, ( i.e. the system (1.9) with m12 = m21 = 1) by using singular
perturbation theory, see [1, Formula (A.13)]. They showed that, if (x1(t, m), x2(t, m)) is the
solution of (1.9), with initial condition (x0

1, x0
2), then, when m → ∞, the total population

x1(t, m) + x2(t, m) is approximated by X(t), the solution of the logistic equation:
dX
dt

= rX
(

1 − X
2K

)
,

X(0) = x0
1 + x0

2,
(3.5)

where r = r1+r2
2 , K = r1+r2

α1+α2
and αi = ri

Ki
. Therefore the total population behaves like the

unique logistic equation given by (3.5). In addition, one obtains the following property: with
the exception of a small initial interval, the populations density x1(t, m) and x2(t, m) are both
approximated by X(t)/2, see [1, Proposition 3]. Therefore, this approximation shows that,
when t and m tend to ∞, the density population xi(t, m) tends toward r1+r2

α1+α2 , and in addition,
xi(t, m) quickly jumps from its initial condition x0

i to the average X0/2 and then is very close
to X(t)/2. Our aim is to generalize this result for the 2-patch model (2.1) for all µ positive.
To avoid any confusion with X(t), which is the total population, we denote Z(t) the solution
of the equation (3.6), and we prove that X(t) is asymptotically equivalent, when m goes to
infinity, to Z(t). We have the following result

Theorem 3.3. Let (x1(t, m), x2(t, m)) be the solution of the system (2.1) with initial condition
(x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let Z(t) be the solution of the Richards equation
dX
dt

= rX
[

1 −
(

X
(m12 + m21)K

)µ]
,

X(0) = x0
1 + x0

2,
(3.6)

where r = m12r1+m21r2
m12+m21

and K =

[
m12r1+m21r2

mµ+1
12

r1
Kµ

1
+mµ+1

21
r2
Kµ

2

] 1
µ

. Then, when m → ∞, we have

x1(t, m) + x2(t, m) = Z(t) + om(1), uniformly for t ∈ [0,+∞) (3.7)
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and, for any t0 > 0, we have
x1(t, m) =

m12

m12 + m21
Z(t) + om(1),

x2(t, m) =
m21

m12 + m21
Z(t) + om(1) uniformly for t ∈ [t0,+∞).

(3.8)

Proof. Let X(t, m) = x1(t, m) + x2(t, m). We rewrite the system (2.1) using the variables
(X, x1). One obtains:

dX
dt

= r1x1

[
1 −

(
x1

K1

)µ]
+ r2(X − x1)

[
1 −

(
X − x1

K2

)µ]
,

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m (m12X − (m12 + m21)x1) .

(3.9)

When m → ∞, (3.9) is a slow-fast system, with one slow variable, X, and one fast variable x1.
According to Tikhonov’s Theorem [17, 30, 34] we consider the dynamics of the fast variable
in the time scale τ = mt. One obtains

dx1

dτ
=

1
m

r1x1

[
1 −

(
x1

K1

)µ]
+ m12X − (m12 + m21)x1.

In the limit m → ∞, we find the fast dynamics

dx1

dτ
= m12X − (m12 + m21)x1. (3.10)

The slow manifold is formed by the equilibrium points of the fast equation (3.10), which given
by:

x∗1 =
m12

m12 + m21
X. (3.11)

Since x∗1 is GAS for the system (3.10), the Theorem of Tikhonov ensures that after a fast
transition toward the slow manifold, the solutions of (3.9) are approximated by the solutions
of the reduced model which is obtained by replacing (3.11) into the dynamics of the slow
variable, that is:

dX
dt

= r1
m12

m12 + m21
X
[

1 −
(

m12X
(m12 + m21)K1

)µ]
+ r2

m21

m12 + m21
X
[

1 −
(

m21X
(m12 + m21)K2

)µ]
,

(3.12)

which gives the equation (3.6). Since (3.6) admits

X∗ = (m12 + m21)K = (m12 + m21)

 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2

 1
µ

as a positive equilibrium point, which is GAS in the positive axis, the approximation given
by Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the
fast variable, where t0 is small as we want. Therefore, let Z(t) be the solution of the reduced
model (3.12) of initial condition Z(0) = X(0, m) = x0

1 + x0
2, then, when m → ∞, we have the

approximations (3.7) and (3.8). □
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In the case where the migration rate tends to infinity, the approximation (3.7) shows that
the total population behaves like a unique equation of Richards (3.6) and then, when t and
m tend to ∞, the total population x1(t, m) + x2(t, m) tends towards X∗

T(∞) defined by (3.4)
as stated in Corollary 3.2. The approximation (3.8) shows that, with the exception of a thin
initial boundary layer, where the density population x1(t, m) and x2(t, m) quickly jumps from
its initial condition x0

1 and x0
2 to m12X0/(m12 +m12) and m21X0/(m12 +m12) respectively. The

first ( resp. second) patch behaves like the single Richards equation

dz
dt

= rz
[

1 −
(

z
m12K

)µ] (
resp.

dz
dt

= rz
[

1 −
(

z
m21K

)µ])
, (3.13)

where r and K are defined in (3.6). Hence, when t and m tend to ∞, the density population
x1(t, m) and x2(t, m) tends toward m12K and m21K respectively, as stated in Theorem 3.1.

4 Influence of dispersal on the total population size

In [2], Arditi et al. have considered the system (1.9) and they showed that there are only three
cases that can occur: the case where the total equilibrium population is always greater than
the sum of carrying capacities, the case where it is always smaller, and a third case, where the
effect of dispersal is beneficial for lower values of the migration rate m and detrimental for
the higher values. More precisely, it was shown in [2], that the following trichotomy holds

• If X∗
T(+∞) > K1 + K2 then X∗

T(m) > K1 + K2 for all m > 0.

• If d
dm X∗

T(0) > 0 and X∗
T(+∞) < K1 + K2, then there exists m0 > 0 such that X∗

T(m) >
K1 + K2 for 0 < m < m0, X∗

T(m) < K1 + K2 for m > m0 and X∗
T(m0) = K1 + K2.

• If d
dm X∗

T(0) < 0, then X∗
T(m) < K1 + K2 for all m > 0.

Therefore, the condition X∗
T(m) = K1 + K2 holds only for m = 0 and at most for one positive

value m = m0. The value m0 exists if and only if d
dm X∗

T(0) > 0 and X∗
T(+∞) < K1 + K2.

In this section, we generalize the result of Arditi et al. [2] by considering the case where
µ , 1 in the system (2.1). We analyze the effect of dispersal on the total equilibrium pop-
ulation for the Richards system (2.1). Using the method of Arditi et al. [2], we describe the
position affects the equilibrium E∗(m) of (2.1) when the migration rate varies from zero to
infinity. The total equilibrium population X∗

T(+∞), given by equation (3.4), play a vary im-
portant role in the characterization of the different possible positions of the equilibrium E∗.
As for the 2-patch logistic model (1.9), we prove that exactly three cases can occur. More
precisely we have the following theorem:

Theorem 4.1. Consider the system (2.1). Let X∗
T(∞) be defined by (3.4). Then,

1. If r1 = r2, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

2. If r1 < r2, then

(a) If m21
m12

< K1
K2

, then

i. If X∗
T(∞) ≥ K1 + K2, then X∗

T(m) ≥ K1 + K2 for all m ≥ 0.
ii. If X∗

T(∞) < K1 + K2, there is an m0 > 0 such that:
A. If m < m0, then X∗

T(m) ≥ K1 + K2.
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B. If m ≥ m0, then X∗
T(m) ≤ K1 + K2 .

(b) If m21
m12

> K1
K2

, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

(c) If m21
m12

= K1
K2

, then X∗
T(m) = K1 + K2 for all m ≥ 0, i.e. the equilibrium E∗ does not

depend on m.

3. If r1 > r2, then

(a) If m21
m12

> K1
K2

, then

i. If X∗
T(∞) ≥ K1 + K2, then X∗

T(m) ≥ K1 + K2.
ii. If X∗

T(∞) < K1 + K2, there is a m0 > 0 such that:
A. If m < m0, then X∗

T(m) ≥ K1 + K2.
B. If m ≥ m0, then X∗

T(m) ≤ K1 + K2.

(b) If m21
m12

< K1
K2

, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

(c) If m21
m12

= K1
K2

, then X∗
T(m) = K1 + K2 for all m ≥ 0, i.e. the equilibrium E∗ does not

depend on m.

Proof. First, we consider the line ∆ with Cartesian equation x1 + x2 = K1 + K2, of slope −1
and passing through the point A = (K1, K2). The equilibrium point E∗ is always on the curve
Cµ (see Appendix A). For m = 0, E∗ coincides with A. When m increases, E∗ describes an arc
of the curve Cµ and ends at point E∗(∞) given in equation (3.1).

1. The equation of the tangent line to the curve Cµ at the point A is given by:

(x1 − K1)
∂Φµ

∂x1
(A) + (x2 − K2)

∂Φµ

∂x2
(A) = 0, (4.1)

where the function Φµ is given by the equation (A.2). Since ∂Φµ

∂x1
(A) = −µr1 and

∂Φµ

∂x2
(A) = −µr2, Equation (4.1) becomes simply

r1x1 + r2x2 = r1K1 + r2K2. (4.2)

If r1 = r2 in the equation (4.2), the tangent space to the the curve Cµ at A is the line ∆.
By the concavity of Cµ, any point of Cµ lies below the line ∆. Therefore E∗(m) satisfies
x∗1(m) + x∗2(m) ≤ K1 + K2, for all m ≥ 0 ( see figure 4.1), which completes the proof of
item 1.

2. We suppose now that r1 < r2, then the line ∆ makes a second intersection with the

curve Cµ at a point noted C. This intersection is below the line Σ : x2 =
K2

K1
x1 ( as

shown in the figures 4.2, 4.3 and 4.4). When m → ∞, the curve Mm,µ defined by (A.3),
goes to the oblique line M∞,µ : x2 = m21

m12
x1. The intersection points between the line

M∞,µ and the curve Cµ are the origin and E∗(∞). If the line M∞,µ is below the line
Σ, that is m21/m12 < K1/K2, we have two possible cases for the relative positions of
the point E∗(∞) and the line ∆. In the case where E∗(∞) is above the line ∆, that is
X∗

T(∞) ≥ K1 + K2, then the equilibrium point start at point A and when m increases
from 0 to ∞, E∗(m) moves along the curve Cµ and ends at the point E∗(∞). Equivalently,
the total equilibrium population start, for m = 0, with the value K1 + K2 and satisfies
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O x1K1

K2

x2

A

∆

Figure 4.1: The illustration of item 1 of Theorem 4.1. The curve Cµ is shown in red for some
values of µ and the straight line ∆ in blue. The total equilibrium population is always smaller
than K1 + K2 for all m because it belongs to the curve Cµ.

O x1K1

K2

x2

A

∆

Σ

M∞,µ

E∗(∞)

C

Figure 4.2: The illustration of item (2.a.i) of Theorem 4.1. The curve Cµ is shown in red
for some values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green
respectively. The total equilibrium point is always greater than K1 + K2 for all m, because it
belongs to the curve Cµ and the limit point E∗(∞) is above ∆. As the migration rate increases
from 0 to ∞, the equilibrium point varies along the curve Cµ from A to E∗(∞).
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the inequality x∗1(m) + x∗2(m) ≥ K1 + K2 for all m, which completes the proof of item
(2.a.i). ( see figure 4.2).

In the case where E∗(∞) is below the line ∆, that is X∗
T(∞) < K1 + K2, the equilibrium

point E∗(m) start, for m = 0, at point A and when m increases from 0 to ∞, it moves
along the curve Cµ, passes through the point C for a certain m0 and ends at the point
E∗(∞). Therefore, the total equilibrium is greater than K1 + K2 for m < m0 and smaller
than K1 + K2 for all m ≥ m0, which completes the proof of item (2.a.ii) ( see figure 4.3).

O x1K1

K2

x2

A

∆

Σ

M∞,µ

E∗(∞)

C

Figure 4.3: The illustration of item (2.a-ii) of Theorem 4.1. The curve Cµ is shown in red
for some values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green
respectively. As the limit point E∗(∞) is above ∆, then, when the migration rate increases
from 0 to ∞, the equilibrium point varies along the curve Cµ from A to E∗(∞), passing
through the point C which is the other point of intersection between the curve Cµ and the
line ∆.

If the line M∞,µ is above the line Σ, that is m21/m12 > K1/K2, then the total equilibrium
population is smaller than the sum of carrying capacities for all m. This completes the
proof of item (2.b). ( see figure 4.4).

It is clear that if the two lines Σ and M∞,µ are identical, i.e. A = E∗(∞), then the total
equilibrium population does not depend on migration rate m. Therefore, x∗1(m) = K1
and x∗2(m) = K2 for all m ≥ 0. This gives the proof of item (2.c).

3. As the role of the variables of the system (2.1) is symmetrical, this case is analogous to
case 2.

□

According to the previous theorem, we concluded that, the dispersal can lead to an in-
creased or decreased the total equilibrium population with persistence in each patch.

Proposition 4.2. The derivative of the total equilibrium population X∗
T at m = 0 is given by:

dX∗
T

dm
(0) =

1
µ
(m12K2 − m21K1)

(
1
r1

− 1
r2

)
. (4.3)
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O x1K1

K2

x2

A

∆
ΣM∞,µ

E∗(∞)

Figure 4.4: The illustration of item (b) of Theorem 4.1. The curve Cµ is shown in red for some
values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green respectively.
The total equilibrium is always smaller than K1 + K2 for all m.

In particular, dX∗
T

dm (0) = 0 if and only if, r1 = r2 or K1
K2

= m12
m21

.

Proof. The equilibrium point E∗(m) satisfies the system 0 = r1x∗1(m)
[
1 −

(
x∗1(m)

K1

)µ]
+ m(m12x∗2(m)− m21x∗1(m)),

0 = r2x∗2(m)
[
1 −

(
x∗2(m)

K2

)µ]
+ m(m21x∗1(m)− m12x∗2(m)).

(4.4)

Dividing the first and the second equation by r1
Kµ

1
x∗1(m) and r2

Kµ
2

x∗2(m) respectively, one obtains
x∗1(m) =

Kµ
1 + m

m12x∗2(m)− m21x∗1(m)
r1
Kµ

1
x∗1(m)

 1
µ

,

x∗2(m) =

(
Kµ

2 + m
m21x∗1(m)− m12x∗2(m)

r2
Kµ

2
x∗2(m)

) 1
µ

.

(4.5)

Hence, the total equilibrium population X∗
T is given by

X∗
T(m) =

Kµ
1 + m

m12x∗2(m)− m21x∗1(m)
r1
Kµ

1
x∗1(m)

 1
µ

+

(
Kµ

2 + m
m21x∗1(m)− m12x∗2(m)

r2
Kµ

2
x∗2(m)

) 1
µ

. (4.6)

By differentiating the equation (4.6) at m = 0, we get:

dX∗
T

dm
(0) =

1
µ

m12x∗2(0)− m21x∗1(0)
r1
Kµ

1
x∗1(0)

K1−µ
1 +

1
µ

(
m21x∗1(0)− m12x∗2(0)

r2
Kµ

2
x∗2(0)

)
K1−µ

2 , (4.7)

which gives (4.3), since x∗1(0) = K1 and x∗2(0) = K2. □
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Note that, the derivative (4.3) is dependent on all the parameters of the model. it is equal
to zero if and only if both patches have the same growth rates or m12K2 = m21K1, positive if
r1 < r2 and m12K2 > m21K1, or r1 > r2 and m12K2 < m21K1.

As a corollary of the previous theorem, we have the result:

Corollary 4.3. Let µi, i = 1, . . . , n, be a positive number such that 0 < µ0 < . . . < µn. Consider
the following systems:

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µi
]
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

[
1 −

(
x2

K2

)µi
]
+ m(m21x1 − m12x2),

(4.8)

where the parameters ri, Ki, m12 and m21 are as in (2.1). Let X∗
T(m, µi), i = 1, . . . , n be the

total equilibrium population of (4.8). Then, the sequence (X∗
T(m, µi))1≤i≤n is increasing. In

particular, when m → ∞, we have:

X∗
T(∞, µ1) < . . . < X∗

T(∞, µn).

Proof. The equilibrium point of the system (4.8) is always on the curve noted Cµi given by

Cµi : r1x1

[
1 −

(
x1

K1

)µi
]
+ r2x2

[
1 −

(
x2

K2

)µi
]
= 0.

These curves intersect at four points (0, 0), (0, K2), (K1, 0) and (K1, K2). If µi < µj for some i
and j, then the curve Cµi is below the curve Cµj as shown in the figure A.1 and in the others
figures 4.1, 4.2, 4.3 and 4.4. Therefore, the total equilibrium population X∗

T(m, µi) < X∗
T(m, µj)

for all m > 0 and for all i, j ∈ {1, . . . , n}. □

5 Two-patch model where one growth rate is much larger than the
second one

In this section, we consider the two-patch model (2.1) and we assume that the growth rate
in the second patch is much larger than in the first. For simplicity we denote m2 := m12 > 0
the migration rate from patch 2 to patch 1 and m1 := m21 > 0 from patch 1 to patch 2.
Mathematically, the model (2.1) is written under this assumption as follows:

dx1
dt = r1x1

[
1 −

(
x1
K1

)µ]
+ m (m2x2 − m1x1) ,

dx2
dt = r2

ϵ x2

[
1 −

(
x2
K2

)µ]
+ m (m1x1 − m2x2) ,

(5.1)

where ϵ is assumed to be a small positive number. We denote E∗(m, ϵ) = (x∗1(m, ϵ), x∗2(m, ϵ)),
the positive equilibrium of (5.1), which is GAS, and X∗

T(m, ϵ) := x∗1(m, ϵ) + x∗2(m, ϵ) the total
equilibrium. The behavior of the model (5.1) for perfect mixing (i.e. m → ∞) is given by the
following formula:

X∗
T(+∞, ϵ) = (m1 + m2)

(
ϵm2r1 + m1r2

ϵmµ+1
2 r1/Kµ

1 + mµ+1
1 r2/Kµ

2

) 1
µ

, (5.2)
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and the derivative of the total equilibrium population X∗
T(m, ϵ) at m = 0 becomes

dX∗
T

dt
(0, ϵ) =

1
µ
(m12K2 − m21K1)

(
1
r1

− ϵ

r2

)
. (5.3)

First, we have the result:

Theorem 5.1. Let (x1(t, ϵ), x2(t, ϵ)) be the solution of the system (5.1) with initial condition
(x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m(m2K2 − m1x1) =: φµ(x1), (5.4)

with initial condition z(0) = x0
1. Then, when ϵ → 0, we have

x1(t, ϵ) = z(t) + oϵ(1), uniformly for t ∈ [0,+∞) (5.5)

and, for any t0 > 0, we have

x2(t, ϵ) = K2 + oϵ(1), uniformly for t ∈ [t0,+∞). (5.6)

Proof. When ϵ → 0, the system (5.1) is a slow-fast system, with one slow variable, x1, and one
fast variable, x2. Tikhonov’s Theorem [17, 30, 34] prompts us to consider the dynamics of the
fast variable in the time scale τ = 1

ϵ t. One obtains

dx2

dτ
= r2x2

[
1 −

(
x2

K2

)µ]
+ ϵm(m1x1 − m2x2).

In the limit ϵ → 0, we find the fast dynamics

dx2

dτ
= r2x2

[
1 −

(
x2

K2

)µ]
. (5.7)

The slow manifold is given by the positive equilibrium of the system (5.7), i.e. x2 = K2, which
is GAS in the positive axis. When ϵ goes to zero, Tikhonov’s Theorem ensures that after a
fast transition toward the slow manifold, the solutions of (5.1) converge to the solutions of
the reduced model (5.4), obtained by replacing x2 = K2 into the dynamics of the slow variable.

The differential equation (5.4) admits unique positive equilibrium, which is GAS. Indeed,
we distinguish two cases according to sign of r1 − mm1. First, note that, if r1 − mm1 = 0, then
dφµ

dx1
(x1) = −(µ + 1) r1

Kµ
1

xµ
1 + r1 − mm1 = 0 if and only if x1 = 0.

If r1 − mm1 < 0, then dφµ

dx1
(x1) = −(µ + 1) r1

Kµ
1

xµ
1 + r1 − mm1 < 0, for all x1 ≥ 0. In addition,

φµ(0) > 0 and φµ → −∞ when x1 goes to infinity. So, there exists a unique positive solution
of φµ(x1) = 0. Denote x∗1(m, 0+) this solution. As φµ(x1) > 0 for all 0 ≤ x1 < x∗1(m, 0+) and
φµ(x1) < 0 for all x1 > x∗1(m, 0+) then, the equilibrium x∗1(m, 0+) is GAS in the positive axis.

If r1 − mm1 > 0, then dφµ

dx1
(x1) = 0 implies x̃1 :=

(
r1−mm1

(µ+1)r1/Kµ
1

) 1
µ
> 0. So φµ is increasing

on [0, x̃1[ and decreasing on ]x̃1, ∞[. In addition, φµ(0) > 0 and φµ → −∞ when x1 goes
to infinity. So, there exists unique positive solution of φµ(x1) = 0 denoted x∗1(m, 0+). As
φµ(x1) > 0 for all 0 ≤ x1 < x∗1(m, 0+) and φµ(x1) < 0 for all x1 > x∗1(m, 0+) then, the
equilibrium x∗1(m, 0+) is GAS in the positive axis. Therefore, the approximation given by
Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the
fast variable, where t0 is as small as we want. Therefore, if z(t) is the solution of the reduced
model (5.4) of initial condition z(0) = x0

1, then, when ϵ → 0, we have the approximations
(5.5) and (5.6). □



56 B. Elbetch

As a corollary of the previous theorem, we have the following result which gives the limit
of the total equilibrium population X∗

T(m, ϵ) of the model (5.1) when ϵ goes to zero:

Corollary 5.2. We have:

X∗
T(m, 0+) := lim

ϵ→0
X∗

T(m, ϵ) = lim
ϵ→0

(x∗1(m, ϵ) + x∗2(m, ϵ)) = x∗1(m, 0+) + K2, (5.8)

where x∗1(m, 0+) is the equilibrium of the reduced model (5.4).

Proposition 5.3. Consider the total equilibrium population (5.8). Then,

dX∗
T

dm
(0, 0+) :=

1
µ

−m1K1 + m2K2

r1
, (5.9)

and
X∗

T(+∞, 0+) :=
m1 + m2

m1
K2. (5.10)

Proof. The equilibrium x∗1(m, 0+) satisfies:

r1x∗1(m, 0+)
[

1 −
(

x∗1(m, 0+)
K1

)µ]
+ m(m2K2 − m1x∗1(m, 0+)) = 0. (5.11)

Dividing (5.11) by r1
Kµ

1
x∗1(m, 0+), we obtain:

x∗1(m, 0+) =

K1
µ + m

m2K2 − m1x∗1(m, 0+)
r1
Kµ

1
x∗1(m, 0+)

 1
µ

. (5.12)

The derivative of (5.12) with respect to m, gives

dx∗1
dm

(m, 0+) =
1
µ

m
d

dm

m2K2 − m1x∗1(m, 0+)
r1
Kµ

1
x∗1(m, 0+)

 (5.13)

+
m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)

K1
µ + m

m2K2 − m1x∗1(m, 0+)
r1
Kµ

1
x∗1(m, 0+)

 1
µ−1

.

For m = 0, we have x∗1(0, 0+) = K1, therefore, the equation (5.13) gives the derivative (5.9).
For the formula of perfect mixing, dividing (5.11) by m, and taking the limit when m → ∞,

we get:
m2K2 − m1x∗1(+∞, 0+) = 0,

Hence, as x∗2(+∞, 0+) = K2, the sum of x∗1(+∞, 0+) and x∗2(+∞, 0+) gives the formula (5.10).
□

Remark 5.4. We can deduce the formula of perfect mixing X∗
T(+∞, 0+) and the derivative of

the total equilibrium population dX∗
T

dm (0, 0+) by computing the limit of the equations (5.2) and
(5.3) when ϵ goes to zero respectively.
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We consider the regions in the set of the parameters m1 and m2, denoted J0 and J1
defined by:

J0 =

{
(m1, m2) :

m2

m1
>

K1

K2

}
, J1 =

{
(m1, m2) :

m2

m1
<

K1

K2

}
. (5.14)

We have the following result which gives the conditions for which patchiness is beneficial or
detrimental in model (5.1) when ϵ goes to zero.

Theorem 5.5. Let J0 and J1 be the domains defined in (5.14). Consider the total equilibrium
population X∗

T(m, 0+) given by (5.8). Then, we have:

• If (m1, m2) ∈ J0 then X∗
T(m, 0+) > K1 + K2, for all m > 0.

• If (m1, m2) ∈ J1 then X∗
T(m, 0+) < K1 + K2, for all m > 0.

• If m2
m1

= K1
K2

, then x∗1(m, 0+) = K1 and x∗2(m, 0+) = K2 for all m ≥ 0. Therefore
X∗

T(m, 0+) = K1 + K2 for all m ≥ 0.

Proof. First, we try to solve the equation X∗
T(m, 0+) = K1 + K2 with respect to m, to obtain

the intersection points between the curve of the total equilibrium population m 7→ X∗
T(m, 0+)

and the straight line m 7→ K1 + K2. For any m > 0, we have

x∗1(m, 0+) = K1 ⇐⇒

K1
µ + m

m2K2 − m1x∗1(m, 0+)
r1
Kµ

1
x∗1(m, 0+)

 1
µ

= K1

⇐⇒m2K2 = m1x∗1(m, 0+)

⇐⇒m2K2 = K1m1 ⇐⇒ dX∗
T

dm
(0, 0+) = 0.

So, if dX∗
T

dm (0, 0+) , 0 then m = 0 and the curve of the total equilibrium population intersects
the straight line m 7→ K1 +K2 in a unique point which is (0, K1 +K2). Therefore, we conclude
that the first and second items of the theorem hold. □

Biologically speaking, according to the result of the previous theorem, the existence of
a faster growing sub-population compared to the second one causes the critical value of
migration rate m0 (see Theorem 4.1) to disappear.

6 Conclusion

The goal of this paper was to generalize to some general growth rates the results obtained
in [2] for a two-patch logistic model. In particular, we considered the model of two patches
with Richards growth rate.

In Section 3, we looked at the case when migration rate goes to infinity. We computed the
equilibrium in this situation (Theorem 3.1) and we proved that the dynamics of the system
(3.6) provide a good approximation of the model (2.1) by using singular perturbation argu-
ments (Theorem 3.3). In Section 4, we have given a complete classification of the conditions
under which dispersal is either beneficial or detrimental to total equilibrium population. The
important result is, even with more general dynamics, the effect of migration is the same as
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with logistic dynamic: either patchiness always has a beneficial effect on the total equilib-
rium population, or this effect is always detrimental, or there exists a critical value m0 of the
migration rate m, such that, the effect is beneficial for m < m0, and detrimental for m < m0
(see Theorem 4.1). In Section 5, we considered the two-patch model (2.1), in the case where
one growth rate is much larger than the last. First, by perturbation arguments, we have given
an approximation of the solutions of the system in this case. Next, we compared the total
equilibrium population with the sum of two carrying capacities.

Some question remains open: how do our results generalize to situations with more than
two patches? If we consider a more general growth dynamic than the growth of Richards
(1.5), this has an effect on the total equilibrium population. I think these questions are
difficult to answer, and require a lot of work and mathematical tools.

Appendix

A Equilibria and stability of (2.1)

In this section, our goal is to prove the global stability of the positive equilibrium of the
system (2.1). In the absence of migration, i.e. the case where m = 0, the system (2.1) admits
(K1, K2) as a non trivial equilibrium point, which furthermore is globally asymptotically
stable (GAS) in the interior of the positive cone R2

+. The problem is whether the equilibrium
continues to be positive and globally stable for any m > 0 or not. We first prove the non
negativity of the solution of System (2.1). We have the following proposition:

Proposition A.1. The positive cone R2
+ is positively invariant for the system (2.1).

Proof. Suppose that, at a given time t, one of the state variables of the system (2.1) is at a
boundary of R2

+, meaning that at least one population is at 0. We suppose first that x1 = 0,
and x2 ≥ 0, then the dynamics of x1 is given by dx1

dt = m21x2 ≥ 0, and, if x2 = 0, and x1 ≥ 0,
then we have dx2

dt = m12x1 ≥ 0. So each trajectory initiated at a boundary of R2
+ either remains

at the boundary or goes to the interior of R2
+. According to [29, Proposition B.7, page 267],

no trajectory comes out of R2
+. Therefore, R2

+ is positively invariant for (2.1). □

The equilibrium of the system (2.1) is the solutions of the following algebraic system: 0 = r1x1

[
1 −

(
x1
K1

)µ]
+ m(m12x2 − m21x1),

0 = r2x2

[
1 −

(
x2
K2

)µ]
+ m(m21x1 − m12x2).

(A.1)

The sum of the two equations of (A.1) shows that the equilibrium points are in a curve noted
Cµ, which its equation is given by:

Φµ(x1, x2) := r1x1

[
1 −

(
x1

K1

)µ]
+ r2x2

[
1 −

(
x2

K2

)µ]
= 0. (A.2)

The curve Cµ passes through the points (0, 0), (K1, 0), (0, K2) and A := (K1, K2) for all value
positive of parameter µ. Note that, it is independent of migration rate m and mij. For the

particular value µ = 1, the curve C1 is an ellipse centered in
(

K1
2 , K2

2

)
( shown in black in

Figure A.1). For µ > 1, the curve Cµ is below the ellipse C1 ( shown in green and brown in the
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figure A.1) and for 0 < µ < 1, the curve Cµ is above the ellipse C1 ( shown in red and blue in

Figure A.1). The function Φµ(x1, x2) = Φµ,1(x1) + Φµ,2(x2), with Φµ,i(xi) = rixi

[
1 −

(
xi
Ki

)µ]
is concave since Φµ,1 and Φµ,2 are two concave functions. Another property of the curve Cµ,
if is that if a point (x1, x2) belongs to Cµ with x1 < K1 (resp. x2 > K2) then x2 > K2 (resp.
x1 < K1) (see figure A.1).

Solving the first equation of system (A.1) for x2 yields a curve noted Mm,µ of equation
x2 = φm,µ(x1), where the function φm,µ is given by the following equation:

φm,µ(x1) :=
1

m12

(
m21x1 −

r1

m
x1

[
1 −

(
x1

K1

)µ])
. (A.3)

The curve Mm,µ (shown in the figure A.1 for some values of µ) depends on the migration rate

m and the parameter µ. It always passes through the origin and the point B :=
(

K1, m21
m12

K2

)
.

So, the equilibrium points are the non-negative intersection between the curves Cµ and Mm,µ.
There are two equilibrium points. The first is the trivial point (0, 0) and the second is a non
trivial point noted E∗(m) := (x∗1(m), x∗2(m)) whose position depend on migration rate m (
see Figure A.2).

O x1

A

x2

K1

K2

O x1

x2

B

Mm,µ

Figure A.1: The curves Cµ (left) and Mm,µ (right) for r1 = 3, r2 = 2, K1 = 5, K2 = 4, m12 =
m21 = m = 1 and µ = 0.001 ( green curves ), µ = 0.2 (gold curves ), µ = 1 (black curves ),
µ = 4 ( red curves ) and µ = 7 (blue curves ).

In the following, our aim is to show the global stability of the equilibrium E∗(m). For
this, we need some results. First, for the non-negativity and boundedness of the solution of
the system (2.1), we have the following result:

Lemma A.2. For any non-negative initial condition, the solutions of the system (2.1) remain
bounded, for all t ≥ 0. Moreover, the set

Σ =

{
(x1, x2) ∈ R2

+/x1 + x2 ≤ ξ∗2
ξ∗1

}
,

where ξ∗1 = µ min {r1, r2} and ξ∗2 = µ(r1K1 + r2K2), is positively invariant and is a global
attractor for the system (2.1).
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O x1

x2

K1

K2

B

Figure A.2: Intersection between Cµ and Mm,µ, which are drawn in the same color.

Proof. To show that all solutions are bounded, we consider the quantity defined by XT(t) =
x1(t) + x2(t). So, we have

ẊT(t) = r1x1(t)
[

1 −
(

x1(t)
K1

)µ]
+ r2x2(t)

[
1 −

(
x2(t)

K2

)µ]
. (A.4)

For all ri and Ki, we have the inequality:

rixi

[
1 −

(
xi

Ki

)µ]
≤ µri(Ki − xi), i = 1, 2. (A.5)

Substituting Equation (A.5) into (A.4), we get

ẊT(t) ≤ −ξ∗1 XT(t) + ξ∗2 for all t ≥ 0,

which gives

XT(t) ≤
(

XT(0)−
ξ∗2
ξ∗1

)
e−ξ1t +

ξ∗2
ξ∗1

, for all t ≥ 0. (A.6)

Hence,

XT(t) ≤ max
(

XT(0),
ξ∗2
ξ∗1

)
, for all t ≥ 0.

Therefore, the solutions of System (2.1) are positively bounded and defined for all t ≥ 0.
From (A.6), it can be deduced that the set Σ is positively invariant and it is a global attractor
for the system (2.1). □

We have also the following property:

Lemma A.3. System (2.1) admits no periodic solution.
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Proof. The isoclines of the system (2.1) are given by the two equations: P1(x1) = − r1
mm12

x1

[
1 −

(
x1
K1

)µ]
+ m21

m12
x1,

P2(x2) = − r2
mm21

x2

[
1 −

(
x2
K2

)µ]
+ m12

m21
x2.

Let fi be the right hand side of the system (2.1). Then, for all m we have:

∂ f1

∂x1
+

∂ f2

∂x2
= r1 + r2 − (µ + 1)

[
r1

(
x1

K1

)µ

+ r2

(
x2

K2

)µ]
− m(m21 + m12) = −m

(
m12

dP1

dx1
+ m21

dP2

dx2

)
< 0.

So, by Dulac’s Criterion [14, Theorem 4.1.1], the system (2.1) admits no periodic solution. □

Theorem A.4. The equilibrium E∗(m) of (2.1) is GAS in the positive cone R2
+ \ {0}.

Proof. The Jacobian matrix of the system (2.1) at E∗(m) is given by:

J(E∗) =

[
κ1 mm12

mm21 κ2

]
,

where κ1 = r1 − (µ + 1)r1

(
x∗1(m)

K1

)µ
− mm21, and κ2 = r2 − (µ + 1)r2

(
x∗2(m)

K2

)µ
− mm12. We

have: 0 < dP1
dx1

(x∗1(m), x∗2(m)) = − 1
mm12

κ1, and 0 < dP2
dx2

(x∗1(m), x∗2(m)) = − 1
mm21

κ2. Therefore,
κ1 < 0 and κ2 < 0. This implies that tr(J(E∗)) = κ1 + κ2 < 0, where tr means the trace.

It’s clear that, in the figures A.3, at the equilibrium E∗, we have: dP1
dx1

(E∗) >
(

dP2
dx2

(E∗)
)−1

,

which gives κ1
−mm12

> −mm21
κ2

. Thus, det J(E∗) = κ1κ2 − m2m12m21 > 0.
Hence by the Routh-Hurwitz criteria for stability, the real parts of the eigenvalues value of
the Jacobian matrix J(E∗) are negative, proving that E∗ is asymptotically stable. Lemmas A.2
and A.3 imply that there cannot be any non-trivial closed paths lying in the interior of the
positive quadrant and hence the asymptotic stability must be global. □

B Two-patch logistic model

We consider the 2-patch logistic equation with asymmetric migrations. We denote by m12 the
migration rate from patch 2 to patch 1, m21 from patch 1 to patch 2, and m is the dispersal
rate between two patches. The model is written:

dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (m12x2 − m21x1) ,

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m (m21x1 − m12x2) .

(B.1)

Note that the system (B.1) is studied in [1, 6, 9, 10, 15] in the case where the migration rates
satisfy m21 = m12, and in [2] for general migration rates. If we denote γ = m12

m21
, then the

system (B.1) becomes: 
dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (γx2 − x1) ,

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m (x1 − γx2) ,

(B.2)
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O x1

E∗(m)

x2

P1

P2

O x1

E∗(m)

x2

P1

P2

O x1

E∗(m)

x2 P1

P2

O x1

E∗(m)

x2

P1

P2

Figure A.3: All possible configurations for the isoclines of the system (2.1) (in red for x1 and
in blue for x2) for certain parameters. The equilibrium points are the intersection between
these two isoclines: the origin and the positive equilibrium E∗(m).

The system (B.2) has always a unique positive equilibrium, still denoted by E∗(m, γ) =
(x∗1(m, γ), x∗2(m, γ)), which is GAS in the interior of positive cone R2 \ {0}. We thus define the
total population abundance at the positive equilibrium under dispersal rate m and dispersal
asymmetry γ by

X∗
T(m, γ) = x∗1(m, γ) + x∗2(m, γ),

as the total realized asymptotic population abundance.

B.1 Total population size for fixed γ

In all of this part, we assume that γ is positive and fixed parameter and m varies in [0, ∞[.
We recall that the derivative of X∗

T(m, γ) with respect to m at m = 0 is given by the following
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formula [8]:
dX∗

T
dm

(0, γ) = (γK2 − K1)

(
1
r1

− 1
r2

)
. (B.3)

The behavior of the model (B.2) for perfect mixing (i.e. m → ∞) is given by the following
formula [2, 8]:

X∗
T(∞, γ) = (1 + γ)

γr1 + r2

γ2α1 + α2
, where αi = ri/Ki. (B.4)

We consider the regions in the set of the parameter γ denoted J0, J1 and J2, defined by:

If r2 > r1 then


J1 =

{
γ : γ > α2

α1

}
,

J0 =
{

γ : α2
α1

≥ γ > K1
K2

}
,

J2 =
{

γ : K1
K2

> γ
}

.

If r2 < r1 then


J1 =

{
γ : γ < α2

α1

}
,

J0 =
{

γ : α2
α1

≤ γ < K1
K2

}
,

J2 =
{

γ : K1
K2

< γ
}

.

(B.5)

We recall the following result of Arditi et al. [2] which gives the conditions for which
patchiness is beneficial or detrimental in model (B.2).

Proposition B.1. The total equilibrium population X∗
T of (B.2) for γ fixed satisfies the follow-

ing properties

1. If r1 = r2 then X∗
T(m, γ) ≤ K1 + K2 for all m ≥ 0.

2. If r2 , r1, let J0, J1 and J2, be defined by (B.5). Then we have:

• if γ ∈ J0 then X∗
T(m, γ) > K1 + K2 for all m > 0

• if γ ∈ J1 then X∗
T(m, γ) > K1 + K2 for 0 < m < m0 and X∗

T(m, γ) < K1 + K2 for
m > m0, where

m0 =
r2 − r1
γ
α2
− 1

α1

1
α1 + α2

.

• if γ ∈ J2 then X∗
T(m, γ) < K1 + K2 for any m > 0

• If γ = K1
K2

, then x∗1(m, γ) = K1 and x∗2(m, γ) = K2 for all m ≥ 0. Therefore
X∗

T(m, γ) = K1 + K2 for all m ≥ 0.

B.2 Total population size for fixed m

In all of this section, we assume that m is fixed parameter and γ varies from 0 to ∞.

B.2.1 The model when γ → 0

We have the following result
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Proposition B.2. Consider the system (B.2). Then,

lim
γ→0

E∗(m, γ) =


(0, K2), i f m ≥ r1,((

1 − m
r1

)
K1, 1

2 K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1

)
, i f m < r1.

(B.6)

Proof. Denote E∗(m, 0+) = (x∗1(m, 0+), x∗2(m, 0+)) := limγ→0 E∗(m, γ). When γ → 0, the
equilibrium equations of (B.2) take the following form:

0 = r1x∗1(m, 0+)
(

1 − x∗1(m, 0+)
K1

)
− mx∗1(m, 0+),

0 = r2x∗2(m, 0+)
(

1 − x∗2(m, 0+)
K2

)
+ mx∗1(m, 0+),

(B.7)

which implies {
0 = (r1 − m)x∗1(m, 0+)− α1(x∗1(m, 0+))2 = 0,
−α1(x∗2(m, 0+))2 + mx∗1(m, 0+) + r2x∗2(m, 0+) = 0.

(B.8)

If m ≥ r1, then the system (B.8) admits (0, 0) and (0, K2) as solutions. Since (0, 0) is unstable
for (B.2), then E∗(m, γ) → (0, K2) as γ → 0.

If m < r1, the first equation in (B.8) gives x∗1(m, 0+) = 0 or x∗1(m, 0+) = r1−m
α1

. If we replace
x∗1(m, 0+) = 0 in the second equation of (B.8) we get x∗2(m, 0+) = 0 or x∗2(m, 0+) = K2, and if
we replace x∗1(m, 0+) = r1−m

α1
in the second equation of (B.8) we obtain the following equation:

−α2(x∗2(m, 0+))2 + r2x∗2(m, 0+) +
m (r1 − m)

α1
= 0, (B.9)

which admits as positive solution

x∗2(m, 0+) =
1
2

K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1.

Therefore, if r1 > m, then the system (B.8) admits three solutions: (0, 0), (0, K2) and

E∗(m, 0+) :=

((
1 − m

r1

)
K1,

1
2

K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1

)
, (B.10)

Since, (0, 0), and (0, K2) are unstable, so E∗(m, λ) converge to E∗(m, 0+) as γ → 0. □

As a corollary of the previous proposition, we obtain the following result which describes
the total equilibrium population X∗

T(m, γ) when γ → 0.

Corollary B.3. we have:

lim
γ→0

X∗
T(m, γ) := X∗

T(m, 0+) =


K2, i f m ≥ r1,(

1 − m
r1

)
K1 +

1
2 K2 +

1
2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1, i f m < r1.

(B.11)
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B.2.2 The model when γ → ∞

In the next theorem, we give the behavior of the model (B.2) when γ → ∞.

Proposition B.4. Let (x1(t, γ), x2(t, γ)) be the solution of the system (B.2) with initial condi-
tion (x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation

dX
dt

= r1X
(

1 − X
K1

)
, (B.12)

with initial condition z(0) = x0
1 + x0

1. Then, when γ → ∞, we have

x1(t, γ) + x2(t, γ) = z(t) + oγ(1), uniformly for t ∈ [0,+∞) (B.13)

and, for any t0 > 0, we have{
x1(t, γ) = z(t) + oγ(1),
x2(t, γ) = oγ(1),

uniformly for t ∈ [t0,+∞). (B.14)

Proof. Let X = x1 + x2. We rewrite the system (B.2) using the variables (X, x1), and get:
dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (γ(X − x1)− x1) ,

dX
dt

= r1x1

(
1 − x1

K1

)
+ r2(X − x1)

(
1 − (X − x1)

K2

)
.

(B.15)

When γ → ∞, (B.15) is a slow-fast system, with one slow variable, X, and one fast variable
x1. As suggested by Tikhonov’s Theorem [17, 30, 34] we consider the dynamics of the fast
variable in the time scale τ = γt. One obtains

dx1

dτ
= m(X − x1). (B.16)

The slow manifold, which is the equilibrium point of the fast dynamics (B.16), is given by
x1 = X. As this manifold is GAS for the system (B.16), the Theorem of Tikhonov ensures that
after a fast transition toward the slow manifold, the solutions of (B.15) are approximated by
the solutions of the reduced model which is obtained by replacing x1 = X into the dynamics
of the slow variable, which gives (B.12).

Since (B.12) admits X = K1 as a positive equilibrium point, which is GAS in the positive
axis, the approximation given by Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable
and for all t ≥ t0 > 0 for the fast variable, where t0 is small as we want. Therefore, let z(t) be
the solution of the reduced model (B.12) of initial condition z(0) = X(0, γ) = x0

1 + x0
2, then,

when m → ∞, we have the approximations (B.13) and (B.14). □

According to previous proposition, when γ → ∞, the equilibrium E∗(m, γ) converge to
(K1, 0) and X∗

T(m,+∞) = K1.
For more details on the effects of dispersal intensity and dispersal asymmetry on the total

population abundance, the reader may refer to the recent work of Gao et al. [11].
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