


Journal of Innovative Applied
Mathematics and Computational

Sciences (JIAMCS)

Volume 2, No. 3 (2022)

Institute of Sciences and Technology, University Center
Abdelhafid Boussouf MILA, ALGERIA.



Contents I

Contents

Aims and Scope II

Editorial Team IV

Faraidun K. Hamasalh, Rahel J. Qadir

Non-polynomial fractional spline method for solving Fredholm integral
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sayed Ali Ahmad Mosavi

An approximate solution for the time-fractional diffusion equationl . . . . 15

Mookiah Suganthi, Mathuraiveeran Jeyaraman, Avulichikkanan Ramachan-
dran

Generalized contraction theorem in M -fuzzy cone metric spaces . . . . . 29

Bilel Elbetch

Effect of dispersal in two-patch environment with Richards growth on popu-
lation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Nadjet Boudjerida, Mohammed Salah Abdelouahab, René Lozi

Modified projective synchronization of fractional-order hyperchaotic memristor-
based Chua’s circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

https://n2t.net/ark:/49935/jiamcs.v2i3.51
https://n2t.net/ark:/49935/jiamcs.v2i3.51
https://n2t.net/ark:/49935/jiamcs.v2i3.46
https://n2t.net/ark:/49935/jiamcs.v2i2.48
https://n2t.net/ark:/49935/jiamcs.v2i2.47 
https://n2t.net/ark:/49935/jiamcs.v2i2.47 
https://n2t.net/ark:/49935/jiamcs.v2i2.25
https://n2t.net/ark:/49935/jiamcs.v2i2.25


Aims and Scope II

Aims and Scope

The Journal of Innovative Applied Mathematics and Computational Sciences
(JIAMCS) is an online open access, peer-reviewed semiannual international
journal published by the Institute of Sciences and Technology, University Center
Abdelhafid Boussouf, Mila, Algeria.

The journal publishes high-quality original research papers from various fields
related to applied mathematics, scientific computing, and computer science.

In particular, it publishes original papers in the following areas:

• Differential equations, (ODE’s, PDE’s, integral equations, difference equa-
tions, fractional differential equations)

• Dynamical systems and bifurcation-chaos theory

• Fractional calculus

• Modern control theory and practice

• Operator’s theory

• Mathematical physics

• Probability and statistics

• Mathematical optimization

• Mathematical modelling and simulation

• Numerical analysis

• Fuzzy logic and systems

• Lattice theory, number theory and cryptography

• Computer science

• Bioinformatics

• Artificial intelligence



Aims and Scope III

• Pattern recognition

• Computer vision and image processing

• Naturel language processing

• Signal processing

• Communication theory and network security



Editorial Team IV

Editorial Team

The Honorary Editor-in-Chief

Amirouche Bouchelaghem, Director of the University Center Abdelhafid Bous-
souf, Mila, Algeria

Editor-in-Chief

Mohammed Salah Abdelouahab, University Center Abdelhafid Boussouf, Mila,
Algeria
m.abdelouahab@centre-univ-mila.dz

Associate Editor-in-Chief

Aissa Boulmarka, University Center Abdelhafid Boussouf, Mila, Algeria
a.boulmerka@centre-univ-mila.dz

Haci Mehmet Baskonus, Harran University, Harran, Turkey
hmbaskonus@gmail.com

René Lozi, Université Côte d’Azur, Parc Valrose, Nice, France
Rene.LOZI@univ-cotedazur.fr

Editorial Board

Aziz Alaoui, Laboratory of Applied Mathematics, University of Le Havre Nor-
mandie, France

Omar Barkat, Departement of Mathematics and Informatics, University Center
Si El-Haoues, Barika, Algeria

Azzeddine Bellour, Departement of Mathematics, Assia Djebar Teacher Training
School of Constantine, Algeria

Maamar Benbachir, Department of Mathematics, Faculty of Sciences, Saad
Dahlab University, Blida1, Algeria

Mouffak Benchohra, Department of Mathematics, Djillali Liabes University of
Sidi Bel Abbes, Algeria



Editorial Team V

Badredine Boudjedaa, Department of Mathematics and computer science, Uni-
versity Center Abdelhafid Boussouf, Mila, Algeria

Tahar Zamène Boulmezaoud, Laboratoire de Mathématiques de Versailles, Uni-
versité de Versailles SQY Université Paris-Saclay 45, avenue des Etats-Unis 78035
Versailles Cedex, France

Carlo Cattani, Department of Economics, Engineering, Society and Business
Organization - DEIM,Tuscia University, Viterbo, Italy

Djamal Ahmed Chacha, Laboratory of Applied Mathematics, University Kasdi
Merbah, Ouargla, Algeria

Armando Ciancio, Dipartimento di Matematica e Informatica, Università degli
Studi di Messina, Messina, Italy

Safwan El Assad, Institut d’Electronique et des Technologies du numéRique
(IETR) / VAADER Team, University of Nantes, Nantes, France

Elsayed M Elsayed, Department of Mathematics, King Abdulaziz University
Jeddah, Saudi Arabia

Ferit Gürbüz, Department of Mathematics, Hakkari University, Hakkari, Turkey

Mohammed Hachama, Department of Mathematics, University of Blida 1, Alge-
ria

Mohamed Haiour, Department of Mathematics, University Badji Mokhtar ,
Annaba, Algeria

Yacine Halim, Department of Mathematics and computer science, University
Center Abdelhafid Boussouf, Mila, Algeria



Editorial Team VI

Zakia Hammouch, Ecole Normale Supèrieure Meknès, Université Moulay Ismail,
Morocco

Nasr-eddine Hamri, Department of Mathematics and computer science, Univer-
sity Center Abdelhafid Boussouf, Mila, Algeria

Jafari Hossein, Department of Mathematics, University of South Africa, Pretoria,
South Africa

Yacine Laalaoui, Department of Information Technology, College of Computers
and Information Technology, Taif University, Taif, Saudi Arabia

Mohamed Lalou, Department of Mathematics and computer science, University
Center Abdelhafid Boussouf, Mila, Algeria

Pedro Lima, Department of Mathematics, Instituto Superior Tecnico Lisbon,
Portugal

Qinghua Ma, Department of Appied Mathematics , Guangdong University of
Foreign Studies, Guangzhou, China

Pammy Manchanda, Department of Mathematics, Guru Nanak Dev University,
Amritsar, India

Salim A. Messaoudi, Department of Mathematics, University of Sharjah, Sharjah,
United Arab Emirates

Soheyb Milles, Departement of Mathematics and Informatics, University Center
Si El-Haoues, Barika, Algeria

Ali Moussaoui, Departement of Mathematics, University of Tlemcen, Tlemcen,
Algeria



Editorial Team VII

Nafaa Nacereddine, Research Center in Industrial Technologies CRTI, Algeria

Adel Ouannes, Department of Mathematics and Computer Science,University
Larbi Ben M’hidi, Oum el Bouaghi, Algeria

Fathalla A Rihan, Department of Mathematical Sciences, United Arab Emirates
University, Al Ain, United Arab Emirates

Anurag Shukla, Department of Applied Science (Mathematics), Rajkiya Engi-
neering College Kannauj, Kannauj-209732, India

Driss Sbibih, Department of Mathematics and Computer Science, University
Mohammed First, Oujda, Morocco

Nouressadat Touafek, Department of Mathematics, University of Jijel, Jijel, Alge-
ria

Cemil Tunç, Department of Mathematics, Van Yuzuncu Yil University, Van,
Turkey

Christos Volos, Department of Mathematics, Aristotle University of Thessaloniki,
Thessaloníki, Greece

Junwei Wang, Department of Applied Mathematics, Guangdong University of
Foreign Studies, Guangzhou, China



Journal of Innovative Applied Mathematics and Computational Sciences

J. Innov. Appl. Math. Comput. Sci. 2(3) (2022), 01–14. n2t.net/ark:/49935/jiamcs.v2i3.51

http://jiamcs.centre-univ-mila.dz/

ISSN (electronic): 2773-4196
© 2022 Published under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 International Li-
cense by the Institute of Science and Technology, Mila University Center Publishing

Non polynomial fractional spline method for solving
Fredholm integral equations

Faraidun K. Hamasalh ID 1 and Rahel J. Qadir ID B 2

Abstract. A new type of non-polynomial fractional spline function for approximat-
ing solutions of Fredholm-integral equations has been presented. For this purpose,
we used a new idea of fractional continuity conditions by using the Caputo fractional
derivative and the Riemann Liouville fractional integration to generate fractional spline
derivatives. Moreover, the convergence analysis is studied with proven theorems. The
approach is also well-explained and supported by four computational numerical find-
ings, which show that it is both accurate and simple to apply.

Keywords: Non-polynomial fractional spline method, Fredholm integral equations,
Fractional derivative.
2020 Mathematics Subject Classification: 45B05, 08A02, 26A99, 65D30, 65K99.

1 Introduction

Consider the second kind of linear integral equation [5-8].

y(t) = f (t) +
∫ b

a
k(t, x)y(x)dx (1.1),

The kernel function of two variables t and x is k(t, x), a and b are constants, y(t) is the un-
known function, and f (t) is given. Integral equations can be used to describe some difficulties
as well Bellour, A. [5] solving Fredholm integral equations by using two cubic spline meth-
ods, in [10] D. Hammad, a new general form of Ten non-polynomial cubic splines for some
classes of Fredholm integral equations are presented, Maleknejad, Khosrow, Jalil Rashidinia,
and Hamed Jalilian in [22], solved Fredholm integral equation via Quintic Spline functions
and in [27] S. Saha Ray, and P. K. Sahu. proposed Numerical methods for solving Fredholm
integral equations of the second kind. And for other works see [4] and [25] Non-polynomial
spline functions are used to find approximate solutions to a variety of problems, including in-
tegral equations [10], [26], [23], and [13], and differential equations [3], [16], [30], [11] and [12],
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wave equations [8], Burgers equation [1], etc.
We employ a similar technique outlined in [10], [22], and [5], but fractional derivative and frac-
tional models are not used there, it is clear that fractional calculus is one of the most reliable
processes for managing complex systems and there are still many models to be suggested, an-
alyzed and used in real-world applications in many fields of science and engineering where
locality plays a significant role. Several fractional derivatives and integral definitions have re-
cently been offered. [28]- [20], [7], and [29]. It also contributes significantly to the progress of
other fields of science, such as engineering [31], chemistry [14], physics [6], and biology [15].
We hope that much better work on this technique will be done in the future and that this will
be the beginning of doing better work.
The following sections of this paper are organized in the given sequence: In Section 2, we give
some basic definitions, derivations, and formulations of the non-polynomial fractional spline
function for solving second-order integral equations. In section 3, we present the methodol-
ogy of our technique for Fredholm-integral equations (FIE). In sections 4 and 5, the method’s
convergence is discussed, and some numerical results are shown for the accurate and simple
techniques, respectively. Finally, section 6 consists of the conclusion.

2 Mathematical preliminaries and Non-polynomial fractional spline
construction

Here are some key fractional definitions before we get into the details of our approach. Dif-
ferent definitions are available for fractional derivatives. In this paper, both the Riemann-
Liouville fractional derivative and the Caputo fractional derivative will be used.

Definition 2.1. [24] The RLD (Riemann- Liouville fractional derivative) of order β can be
defined as:

aDβ
t f (t) =

1
Γ(n − β)

(
d
dt

)n ∫ t

a
(t − u)n−β−1 f (u)du.

for every β, and n = ⌈β⌉
Definition 2.2. [24] The CD (Caputo fractional derivative) of order β is defined as:

C
a Dβ

t f (t) =
1

Γ(n − β)

∫ t

a
(t − u)n−β−1

(
d

du

)n

f (u)du , n = ⌈β⌉ and β > 0.

For β = 0, we introduce the notation:

CDβ
t f (t) = Dβ f (t).

We used the non-polynomial fractional spline function to approximate a solution to the
integral equation. For this reason, we consider a finite set of points Θ = [a, b] with ∆ : a =

t0 < · · · < tm = b, where ti = a + ih. Let Si(t) be the interpolating non-polynomial FS
(fractional Spline) function with interpolates y at ti with new fractional continuity conditions,
defined on [ti, ti+1], i = 0, . . . , m − 1, as:

Si(t) = aisin(τ(t − ti)) + bicos(τ(t − ti)) + ci(t − ti) + di(t − ti)
1
2 + ei. (2.1)

Where ai, bi, ci, di, and ei are real numbers and τ is the frequency of trigonometric functions.
To derive the coefficients ai, bi, ci, di and ei we define boundary conditions:

Si(ti) = yi, Si(ti+1) = yi+1, S′
i(ti) = Mi, S′

i(ti+1) = Mi+1, and S′′
i (ti) = y′′i (ti). (2.2)



Non polynomial FSM for solving FIE 3

Then, using algebraic manipulation and a Python program, we get the following expression:

ai =
(τMi+1 − τMi − α1y′′i )

τ2(α0 − 1)
, bi =

−y′′i
τ2 , ci =

τα0Mi − τMi+1 + α1y′′i
τ(α0 − 1)

, ei =
(τ2yi + y′′i )

τ2 , and

di =
τ2(α0 − 1)yi+1 − τ2(α0 − 1)yi − (τ2hα0 − τα1)Mi − (τα1 − τ2h)Mi+1 − (2α0 + τhα1 − 2)y′′i

τ2
√

h(α0 − 1)
.

(2.3)
Where α0 = cos(τh), and α1 = sin(τh).

We obtained the continuity conditions using fractional derivative from the Caputo fractional
derivative:
D(1/2)Si(ti) = D(1/2)Si−1(ti), then we get the following relations:

µ1Mi−1 − µ2Mi + µ3Mi+1 = µ4(yi−1 − 2yi + yi+1)− µ5y′′i−1 + µ6y′′i . (2.4)

Where
µ1 = 2

√
πτhα2+(π−4)θα0−πα1√

τπ
, µ2 = 2

√
hπθ(

√
2α2−1)−

√
h(2πα1−αθα0+(4−π)θ)√
πθ

, µ3 = (
√

πτ(θ−α1)+
√

2hτ)
τ ,

µ4 = −α4
√

θ(α0 − 1) , µ5 = 2
√

πθ(α1α2+α3(α0−1))+2π(α0−1)+(π−4)θα1√
πτ3 , µ6 = (

√
π(α1θ+2α0−2)+

√
2θ(α1+α0−1))√

τ3

,
θ = hτ , α0 = cos(hτ) , α1 = sin(hτ) , α2 = sin((4hτ + π)/4) , α3 = cos((4hτh + π)/4)
and α4 =

√
(π/h) .

The following local truncation error was observed by expanding Eq. (2.4) with Taylor series
about ti:
Ti = β1y′i + β2y′′i + β3y′′′i + β4y(4)i + β5y(5)i + β6y(6)i + O(h6).
Where
β1 = (−µ1 − µ2 − µ3) , β2 = (µ1h − µ3h − µ4h2 + µ5 + µ6) , β3 = (−µ1

h2

2! − µ3
h2

2! − µ5h) ,
β4 = (µ1

h3

3! − µ3
h3

3! − µ4
h4

12 + µ5
h2

2! ) , β5 = (µ1
h4

4! − µ3
h4

4! − µ4
2h5

5! − µ5
h3

3! ),
and β6 = µ5

h4

4! . Two more equations are required to get the unique solution of the linear
system (2.4). Using the Taylor series and the undetermined coefficients technique, which is
shown below.

2

∑
k=1

γky′k =
1

6h

4

∑
k=0

ηkyk + O(h5),

3

∑
k=2

γk−1y′k =
1

12h

5

∑
k=0

σkyk + O(h5).

(2.5)

The unknown coefficients in Eq. (2.5) are obtained as follows by using Taylor’s expansion:
(γ1, γ2) = (−µ2, µ3)

(η0, η1, η2, η3, η4) = (−2µ2,−3µ2 − 2µ3, 6µ2 − 3µ3, 6µ3 − µ2,−µ3)

(σ0, σ1, σ2, σ3, σ4, σ5) = (µ2, µ3 − 8µ2,−8µ3, 8µ2, 8µ3 − µ2,−µ3)

Rewriting equation (2.4) we get the following in matrix form: LM = L1y + L2ȳ
And hence

M = L−1L1y + L−1L2L3y, (2.6)

Where M = (y′0, y′1, . . . , y′n)T, y = (y0, y1, . . . , yn)T, ȳ = (y′′0 , y′′1 , . . . , y′′n)T and L3y = ȳ.
Also L1 is three-diagonal matrix, L2 is two-diagonal matrix, L3 is an integration diagonal
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matrix, and

L =




µ1 −µ2 µ3 0 0 · · · 0 0 0 0 0
0 µ1 −µ2 µ3 0 · · · 0 0 0 0 0
0 0 µ1 −µ2 µ3 · · · 0 0 0 0 0
...

. . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0 0 µ1 −µ2 µ3 0 0
0 0 0 0 0 0 0 µ1 −µ2 µ3 0
0 0 0 0 0 0 0 0 µ1 −µ2 µ3




, (2.7)

3 Method of Non polynomial Analysis

Using the spline polynomial technique, we investigate the second type of integral equation.
For Eq. (1.1), a problem has been derived, which discusses the existence and uniqueness of
the solution.
From Eq. (1.1) and Eqs. (2.1)-(2.3) we have:

y(ti) ≈ f (ti) +
m−1

∑
j=0

∫ xj+1

xj

k (ti, x) Sj(x)dx,

= f (ti) +
m−1

∑
j=0

∫ xj+1

xj

k (ti, x) [ajsin(τ(x − xj)) + bjcos(τ(x − xj)) + cj(x − xj) + dj(x − xj)
1/2 + ej]dx,

= f (ti) +
m−1

∑
j=0

∫ xj+1

xj

k (ti, x) [

√
(x − xj)

h
yj+1 + (1 −

√
(x − xj)

h
)yj + (

α0

(α0 − 1)
(x − xj)−

sin(τ(x − xj))

τ(α0 − 1)
− θα0 − α1√

θτ(α0 − 1)
)Mj + (

sin(τ(x − xj)

τ(α0 − 1)
− (x − xj)

(α0 − 1)
− (α1 − θ)√

τθ(α0 − 1)

√
x − xj)Mj+1

+(
α

θ(α0 − 1)
(x − xj)−

α1sin(τ(x − xj))

τ2(α0 − 1)
− cos(τ(x − xj))

τ2 − 2α0 + θα1 − 2

τ2
√

h(α0 − 1)

√
x − xj +

1
τ2 )y

′′
j ]dx
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= f (ti) +
m−1

∑
j=0

(
yj+1√

h
− α1 − θ√

τθ (α0 − 1)
Mj+1

) ∫ xj+1

xj

k (ti, x)
√

x − xjdx +
m−1

∑
j=0

(
−yj−

θα0 − α1√
τθ (α0 − 1)

Mj −
(2α0 + θα1 − 2)
τ2

√
h (α0 − 1)

y′′j

) ∫ xj+1

xj

k (ti, x)
√

x − xjdx +
m−1

∑
j=0

(
α0

α0 − 1
Mj+

α1

τ (α0 − 1)
y′′j

) ∫ xj+1

xj

k (ti, x)
(

x − xj
)

dx −
m−1

∑
j=0

Mj+1

(α0 − 1)

∫ xj+1

xj

k (ti, x)
(

x − xj
)

dx +
m−1

∑
j=0

Mj+1

τ (α0 − 1)
∫ xj+1

xj

k (ti, x) sin
(
τ
(
x − xj

))
dx +

m−1

∑
j=0

( −Mj

τ (α0 − 1)
− α1

τ2 (α0 − 1)
y′′j

) ∫ xj+1

xj

k (ti, x)

sin
(
τ
(

x − xj
))

dx +
m−1

∑
j=0

(
yj +

y′′j
τ2

) ∫ xj+1

xj

k (ti, x) dx −
m−1

∑
j=0

y′′j
τ2

∫ xj+1

xj

k (ti, x) cos
(
τ
(
x − xj

))
dx.

Let
a(i, j) =

∫ xj+1
xj

k (ti, x)
√

x − xjdx = b(i, j + 1) , c(i, j) =
∫ xj+1

x; k (ti, x)
(

x − xj
)

dx = d(i, j + 1) ,

q(i, j) =
∫ xj+1

xj
k (ti, x) Sin

(
τ
(
x − xj

))
dx = r(i, j + 1) , g(i, j) =

∫ xj+1
xj

k (ti, x) dx

and p(i, j) =
∫ xj+1

xj
k (ti, x) cos

(
τ
(
x − xj

))
dx

Suppose that A = a(i, j), B = b(i, j), C = c(i, j), D = d(i, j), Q = q(i, j), R = r(i, j), G = g(i, j)
and P = p(i, j) .
Also ŷj, M̂j, F̂l and ˆ̄yj are approximations for yj, Mj, fi and ŷi respectively such satisfy in Eq.
(2.4) for i=0, 1, . . . ,m then we get:

ŷj = F̂i +
B√

h
ŷj −

α1 − θ√
τθ (α0 − 1)

BM̂j − Aŷj −
θα0 − α1√
τθ (α0 − 1)

AM̂j −
(2α0 + θα1 − 2)
τ2

√
h (α0 − 1)

A ˆ̄yj+

α0

α0 − 1
CM̂j +

α1

τ (α0 − 1)
C ˆ̄yj −

1
α0 − 1

DM̂j +
1

τ (α0 − 1)
RM̂j −

1
τ (α0 − 1)

QM̂j −
α1

τ2 (α0 − 1)
Q

ˆ̄yj + Gŷj +
G
τ2

ˆ̄yj −
P
τ2

ˆ̄yj.
(3.1)

Then we get:

ŷj = F̂i +
1√

h
(B −

√
hA + G)ŷj +

1
(α0 − 1)

(
α1 − θ√

τθ
B − θα0 − α1√

τθ
A + α0C − D +

R
τ
− Q

τ

)
M̂j

+
1
τ

(
2α0 + θα1 − 2

τ
√

h (α0 − 1)
A +

α1

(α0 − 1)
C − α1

τ (α0 − 1)
Q +

G
τ
− P

τ

)
ˆ̄yj.

Let

A1 =
1√

h
(B −

√
hA + G), A2 =

1
(α0 − 1)

(
α1 − θ√

τθ
B − θα0 − α1√

τθ
A + α0C − D +

R
τ
− Q

τ

)
,

A3 =
1
τ

(
2α0 + θα1 − 2

τ
√

h (α0 − 1)
A+

α1

(α0 − 1)
C − α1

τ (α0 − 1)
Q +

G
τ
− P

τ

)
.

Then
ŷj = F̂i + A1ŷj + A2M̂j + A3 ˆ̄yj (3.2)
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Substituting Eq. (2.6) in Eq. (3.2) we get:

[I − A1 − L−1L1A2 + L−1L2L3 A2 + A3L3]ŷ = F̂ + T. (3.3)

The vector of local truncation error is T = [t0, t1, . . . , tm], displayed as the (m+1) dimensional
column vector of the exact solution. ŷ = [y0, y1, · · · , ym]T.
According to Eqs. (3.2) and (3.3) we get:

[I − A1 − L−1L1 A2 + L−1L2L3 A2 + A3L3]E = T. (3.4)

By solving Eq. (3.1), an approximation of Eq. (1.1) will be obtained.
The function yi can now be approximated by using the non-polynomial fractional spline Ŝi ,
where

Ŝi(t)=

(
τ

5
2
√

θ(α0−1)ŷi+τ
5
2
√

θ(α0−1)ŷi+1+τ2 √
h(α0θ−α1)M̂i+τ2 √

h(θ−α1)M̂i+1+
√

τθ(2α0−θα1−2) ˆ̄yi

)

τ2θ
3
2 (α0−1)

√
t−ti+

(τα0M̂i−τM̂i+1+α1 ˆ̄yi)
τα0−τ (t−ti)+

(
M̂i+1 − τM̂i − α1 ˆ̄yi

τ2α0 − τ2

)
(sin (τ (t − ti)))−

( ˆ̄yi

τ2

)
(cos (τ (t − ti))) +

(
τ2ŷi +

√
hŷi

τ2
√

h

)
+ O(h5).

(3.5)
In-consequence ∀i = 1(1)m − 1, t ∈ (ti, ti+1), then we get:

∣∣Si(t)− Ŝi(t)
∣∣ ≡ φh5. (3.6)

4 Convergence of the method

This section includes some important theorems and lemmas, as well as the study of non-
polynomial fractional spline convergence.

Lemma 4.1. [10] Let L be a square Matrix with ∥L∥∞ < 1, then the matrix (I − L) is invertible.
Furthermore,

∥∥(I − L)−1
∥∥

∞ ≤ 1
1−∥L∥∞

,
Where I is the identity matrix and ∥L∥∞ is the infinity norm of the matrix, L = (lij) that is described
as following:

∥L∥∞ = max
1≤i≤n

(
n

∑
j=0

∣∣lij
∣∣
)

.

Lemma 4.2. Let S(t) satisfy in (2.1)-(2.4) and be the unique non-polynomial fractional spline, for a
given function y ∈ C5[a, b]. Then:∥Sα − yα∥ ≤ O(h3), where α ∈ R .
proof. We investigate the continuity of sufficiently high-order derivatives of y by applying (2.1)-(2.4),
and we obtain

S(
1
2 )

i (ti) = −γ0yi + γ1y(
1
2 )

i + γ2y′i + γ3y(
3
2 )

i + γ4y′′i + γ5y(
5
2 )

i + γ6y(3)i + γ7y(
7
2 )

i + γ8y(4)i (α1) ,

S(
3
2 )

i (ti) = γ9y(
3
2 )

i + γ10y′′
i + γ11y(

5
2 )

i + γ12y(3)
i + γ13y(

7
2 )

i + γ14y(4)
i (α1) ,

S(
5
2 )

i (ti) = −γ15y(
3
2 )

i + γ16y′′
i + γ17y(

5
2 )

i + γ18y(3)
i + γ19y(

7
2 )

i + γ20y(4)
i (α1) .

(4.1)

Where, γ0 =
√

π(sin(τh)−τh)
2τ

√
h(cos(τh)−1)

, γ1 =
(
√

εh−1)(τ
√

h(cos(τh)−1))−
√

εh(sin(τh)−τh)
τ
√

h(cos(τh)−1)
,

γ2 =
√

πεh
3
2 τ(cos(τh)−1)+

√
π sin(τh)−

√
hε(sin(τh)−τh)−√

πτ hcos(τh)
2τ

√
h(cos(τh)−1)

,
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γ3 = 3·
√

2
√

ε
√

τ+2
√

πτε
3
2 h2(cos(τh)−1)−2

√
πτε2h2(sin(τh)−τh)

3τ
√

πh(cos(τh)−1)
,

γ4 = ε(2h)
3
2 +4

√
πε2h

3
2 τ(cos(τh)−1)−√

π(εh)2(sin(τh)−τh)+4
√

π(cos(τh)−1)
4τ

√
h(cos(τh)−1)

,

γ5 = 5
√

τ(2ε)
3
2 h2+4

√
πε

5
2 h3τ−2

√
π(εh)

3
2 (sin(τh)−τh)

15τ
√

πh(cos(τh)−1)
, γ6 = 6

√
τ(h)

3
2 ε2+τ(2)

3
2 ε3h

5
2 (cos(τh)−1)−

√
2π(sin(τh)−τh)

12τ
√

2 h(cos(τh)−1)
,

γ7 = (2 hε)
5
2

15
√

πτ(cos(τh)−1) , γ8 = (εh)3

6τ
√

2τ(cos(τh)−1)′
, γ9 =

√
2τεh√

π(cos(τh)−1) , γ10 = τεh−sin(τh)+
√

τ(cos(τh)−1)√
τ(cos(τh)−1) ,

γ11 = 4
√

τ(εh)
3
2

3
√

π(cos(τh)−1) , γ12 =
√

τ(εh)2

2(cos(τh)−1)′ , γ13 = 8
√

τ(εh)
5
2

15
√

π(cos(τh)−1) , γ14 =
√

τ(εh)3

6(cos(τh)−1) ,

γ15 = τ
√

2ετh√
π

, γ16 = εhτ2
√

2+
√

2τ sin(τh)−1√
2τ

, γ17 = 4(ετh)
3
2

3
√

π
, γ18 = 4(εh)2(τ)

3
2

2 , γ19 = 8(εh)
5
2 (τ)

3
2

15
√

π

and γ20 = (εh)3(τ)
3
2

6 .
Now, let e(t) = S(t)− y(t), then for 0 ≤ t ≤ 1,

e (ti + εh) = e (ti) +
2√
π

ε
1
2 h

1
2 y(

1
2 )

i + εhy(1)i +
4

3
√

π
ε

3
2 h

3
2 y(

3
2 )

i +
1
2!

ε2h2y(2)i +
8

15
√

π
ε

5
2 h

5
2 y(

5
2 )

i +

1
3!

ε3h3y(3)i +
16

105
√

π
ε

7
2 h

7
2 y(

7
2 )

i

(
αj
)

.

(4.2)
For 0 ≤ ε ≤ 1 Putting Eq. (4.1) in Eq. (4.2), we get:
∥e (xi + εh)∥ ≤

√
τ(εh)3

6 y(4)i (α1).

Lemma 4.3. The matrix [I − A1 − L−1L1A2 + L−1L2L3A2 + A3L3] is invertible, if
φ∥k∥∞(b − a)

(
2
3 − 2

√
h

3 + σ1σ2σ3τ
3
2 h

2 − τσ3σ4) < 1 .
Proof:
Clearly, for j = 0, 1, . . . , n, then:

∥A∥∞ = ∥B∥∞ ≤ ∥k∥∞(b − a)
2h

1
2

3
,

∥C∥∞ = ∥D∥∞ ≤ ∥k∥∞(b − a)
h
2

,

∥Q∥∞ = ∥R∥∞ ≤ ∥k∥∞(b − a)| sin(τh)|,
∥G∥∞ ≤ ∥k∥∞(b − a),

∥P∥∞ ≤ ∥k∥∞(b − a)
1
τ
| cos(τh)|,

∥L1∥∞ ≤ σ1
| cos(τh)|√

τπ
,

∥L2∥∞ ≤ σ2τ
3
2 ,

∥A1∥∞ ≤ ∥k∥∞(b − a)
2(1 −

√
h)

3
,

∥A2∥∞ ≤ ∥k∥∞(b − a)
h
2

,

∥A3∥∞ ≤ ∥k∥∞(b − a)τσ4.

(4.3)

Where

σ4 =
2(2 cos(τh)− 2 + τ sin(τh))

3τ2(cos(τh)− 1)
+

h sin(τh)
2(cos(τh)− 1)

+
sin(τh)2

τ(cos(τh)− 1)
+

cos(τh − 1)
τ3 .



8 Faraidun K. Hamasalh and Rahel J. Qadir

From Eq. (3.4) of matrix representation we get:
(
∥A1∥+

∥∥∥L−1
∥∥∥ ∥L2∥ ∥L3∥ ∥A2∥ − ∥A3∥ ∥L3∥

)
< 1,

Then we use lemma (4.1), the matrix
[
I − A1 − L−1 L1 A2 + L−1 L2 L3 A2 + A3 L3

]
, is invertible,

if
∥∥A1 + L−1L1A2 − L−1L2L3A2 − A3L3

∥∥
∞ < 1, we get:

φ∥k∥∞(b − a)

(
2
3
− 2

√
h

3
+ σ1σ2σ3τ

3
2

h
2
− τσ3σ4

)
< 1.

Theorem 4.4. [10]. Let y(t) ∈ C5(I), k(t, x) ∈ C5(I × I) such that

φ∥k∥∞(b − a)

(
2
3
− 2

√
h

3
+ σ1σ2σ3τ

3
2

h
2
− τσ3σ4

)
< 1.

As a result, consider single numerical solutions and the error obtained. E = y − Ŝ satisfies
∥E∥ ≡ O(h3), ∀Ω ⊂ I Where τ, θ, h, σ1, · · · , σ4, and σ5 are constants, and I := [a, b].
Proof:
We use Eq. (3.4) and lemma (4.1) we get

∥E∥ ≤ ∥T∥
1 − (∥A1∥+ ∥L−1∥ ∥L2∥ ∥L3∥ ∥A2∥ − ∥A3∥ ∥L3∥)

, (4.4)

By substituting ∥T∥ ≤ ωh3 and Eq. (4.3) in Eq. (4.4) we get: ∥E∥ ≡ O
(
h3),

Therefore, we have
∥y − Ŝ∥∞ ≤ φ1h3, (4.5)

And applying Eq. (3.6) and Eq. (4.5), ∥y − Ŝ∥∞ ≤ ∥y − S∥∞ + ∥S − Ŝ∥∞ ≤ φ1h3 + φh5 ≡ O(h3)

Thus, it is as follows: ∥E∥ → 0 as h → 0, then we explained the convergence of the third order proposed
method.
See [10].

5 Results and Discussion

The proposed technique is applied to some FIE (Fredholm-integral equations) test problems in
this section, with a comparison of the presented method and the exact solution to illustrate the
suggested technique’s correctness and effectiveness, as well as to compare it with some other
existing methods for solving three integral equations test problems. We calculate the results
for x = 0, 0.2, 0.4, 0.6, 0.8, 1, and n = 10, 40. Python software handles all of the calculations.
The absolute error ||E|| in theorem 4.4 is applied to compute the efficiency of the proposed
technique.

Example 5.1. [5] Consider the FIE:

g(x) = f (x) +
∫ 1

0
k(x, t)g(t)dt, x ∈ [0, 1].

Where k(x, t) = 1
12

tx−1
1+x2 , and f (x) is chosen so that the exact solution of this equation g(x) =

sin(x) + 1 . Presented the exact and approximation solutions in Table 5.1. and Figure 5.1. and
the absolute errors of the proposed method and NSI method in [5] in Table 5.2.
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x Exact solutions Proposed method
0 1.0 0.9998809889969068

0.2 1.0998334166468282 1.0997366950959002
0.4 1.1986693307950613 1.198566011640177
0.6 1.2955202066613396 1.295421184579774
0.8 1.3894183423086506 1.3893240990734304
1 1.479425538604203 1.4793383323910736

Table 5.1: Difference between exact and approximation solutions with h=0.1, and τ = 106.

x Best in [5] of NSI with n=20 Presented method with n=10
0 0.46 ×10−3 1.19 ×10−4

0.2 0.61 ×10−3 9.67 ×10−5

0.4 0.68 ×10−3 1.03 ×10−4

0.6 0.66 ×10−3 9.90 ×10−5

0.8 0.60 ×10−3 9.42 ×10−5

1 0.51 ×10−3 8.72 ×10−5

Table 5.2: Absolute errors E(n) for different points.

Figure 5.1: Comparison between the exact solution and approximate solution using the pro-
posed method.

Example 5.2. [21] Consider the FIE:

g(x) = f (x) +
∫ 1

0
k(x, t)g(t)dt, x ∈ [0, 1].

Where k(x, t) = t4

24 x, f (x) = ex − x4

24 and g(x) = ex, is the exact solution. Presented the absolute
errors of solutions in Table 5.3. and Figure 5.2.
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n = 10 and τ = 105 n = 40 and τ = 106 n = 106 and τ = 1010

g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)|
1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0

1.10517 1.10525 8.5 × 10−5 1.025315 1.025312 2.1 × 10−6 1.000001 1.000001 0.0
1.22140 1.22050 8.9 × 10−4 1.051271 1.051262 8.2 × 10−6 1.000002 1.000002 0.0
1.34985 1.34929 5.6 × 10−4 1.077884 1.077849 3.4 × 10−5 1.000003 1.000003 0.0
1.49182 1.48824 3.5 × 10−3 1.105170 1.105097 7.3 × 10−5 1.000004 1.000004 0.0
1.64872 1.64836 3.5 × 10−4 1.133148 1.133007 1.4 × 10−4 1.000005 1.000005 0.0

Table 5.3: Absolute error E(n) for different points.

Figure 5.2: Comparison between the exact solution and approximate solution using the pro-
posed method.

Example 5.3. [21] consider the FIE:

g(x) = f (x) +
∫ 1

−1
k(x, t)g(t)dt, x ∈ [0, 1],

where, k(x, t) = x4

24 , f (x) = e−x − x2

2 + x3e−1

6 and g(x) = e−x − x2

2 is the exact solution.
Presented the absolute errors of solutions in Table 5.4 and Figure 5.3.

Example 5.4. [21] consider the IDE:

g(x) = f (x) +
∫ 1

0
k(x, t)g(t)dt, x ∈ [0, 1].

where, k(x, t) = ( x4

24 − tx3

6 ), f (x) = xex + 1 − x4

24 + x3(e−2)
6 and g(x) = xex + 1 is the exact

solution.
Presented the absolute errors of solutions in Table 5.5 and Figure 5.4.
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n = 10 and τ = 0.1 n = 40 and τ = 0.1 n = 106 and τ = 0.1
g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)|

1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0
0.89983 0.89989 6.04 × 10−5 0.974997 0.974998 9.57 × 10−7 0.99 0.99 0.0
0.79873 0.79919 4.6 × 10−4 0.949979 0.949987 7.64 × 10−6 0.99 0.99 0.0
0.69581 0.69730 1.48 × 10−3 0.924930 0.924956 2.56 × 10−5 0.99 0.99 0.0
0.59032 0.59351 3.19 × 10−3 0.899837 0.899897 6.04 × 10−5 0.99 0.99 4.5 × 10−25

0.48153 0.48714 5.61 × 10−3 0.874684 0.874801 1.17 × 10−4 0.99 0.99 7.2 × 10−25

Table 5.4: Absolute error E(n) for different points.

Figure 5.3: Comparison between the exact solution and approximate solution using the pro-
posed method.

6 Conclusion

This paper presents a new general form of non-polynomial fractional spline function to ap-
proximate the Fredholm-integral equation of the second kind, and the proposed approach is
innovative. The current scheme was developed by running four different examples through
the Python program. The results were compared to the exact solution and show that the pro-
posed technique is better than the method in [5]. The physical behavior of approximation and
exact solutions can be evaluated in 2D for various points, and it is clear that adding step sizes
ensures no error.
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n = 10 and τ = 104 n = 40 and τ = 104 n = 106 and τ = 109

g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)| g (xi) S (xi) |E (xi)|
1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0

1.11051 1.11074 2.2 × 10−4 1.025632 1.025637 4.9 × 10−6 1.000001 1.000001 0.0
1.24428 1.24422 5.9 × 10−5 1.052563 1.052553 9.9 × 10−6 1.000002 1.000002 0.0
1.40495 1.40532 3.6 × 10−4 1.080841 1.080870 2.8 × 10−5 1.000003 1.000003 0.0
1.59672 1.59583 8.9 × 10−4 1.110517 1.110525 8.8 × 10−6 1.000004 1.000004 0.0
1.82436 1.82086 3.4 × 10−3 1.141643 1.141698 5.4 × 10−5 1.000005 1.000005 0.0

Table 5.5: Absolute error E(n) for different points.

Figure 5.4: Comparison between the exact solution and approximate solution using the pro-
posed method.
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Abstract. In this paper, a numerical method based on a finite difference scheme is
proposed for solving the time-fractional diffusion equation (TFDE). The TFDE is ob-
tained from the standard diffusion equation by replacing the first-order time derivative
with Caputo fractional derivative. At first, we introduce a time discrete scheme. Then,
we prove the proposed method is unconditionally stable and the approximate solution
converges to the exact solution with order O(∆t2−α), where ∆t is the time step size and
α is the order of Caputo derivative. Finally, some examples are presented to verify the
order of convergence and show the application of the present method.
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1 Introduction

In recent years, the use of fractional ordinary differential equations (FODEs) and fractional
partial differential equations (FPDEs) in finance problems [10, 21, 22], hydrology problems
[1,3–5,26], physics problems [2,6–8,12,18–20,23,24,29], and mathematical models have become
increasingly popular. The numerical and the analytical solutions of the time-fractional partial
differential equations are studied using Fourier-Laplace transforms or Green’s functions (see
e.g. [9, 16, 25, 27, 28]). However, published papers on the numerical solution of the time-
fractional diffusion equation (TFDE) are limited. The authors of [11] have proposed finite
element methods for time-fractional partial differential equations; the authors of [17] have
used a meshless method for the(TFDE); Liu et al. [15] used an explicit finite-difference scheme
for TFDE (this method is a lowe-order method); Lin and Xu et al. [14] have proposed finite
difference/spectral methods for TFDE, they used Legendre spectral methods in space and a
finite difference scheme in time and show that the methods for α order TFDE have convergence
rate O(∆t2−α + N−m/(∆t)α), where ∆t, N and m are the time step size, polynomial degree
and the regularity of the exact solution respectively. The convergence rate in their paper is not
optimal.
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In this paper, we propose a numerical scheme based on the finite difference method for
solving time-fractional diffusion equation and prove an optimal convergence rate. We consider
the time-fractional diffusion equation of the form:

∂αu(x, t)
∂tα

− ∂2u(x, t)
∂x2 = f (x, t), (x, t) ∈ [0, 1]× [0, T], (1.1)

subject to the boundary and initial conditions:

u(0, t) = u(1, t) = 0, t ∈ (0, T], (1.2)

u(x, 0) = u0(x), x ∈ [0, 1], (1.3)

where 0 < α < 1, u0 and f are given smooth functions, the time-fractional derivative ∂αu(x,t)
∂tα is

the Caputo derivative defined by

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

ds
(t − s)α

. (1.4)

2 The numerical method for the TFDE

In this section, we will estimate the time-fractional derivative ∂αu
∂tα at tm+1 by forward finite

difference approximation to discretize the time-fractional derivative. Let tm := m∆t, m =

0, 1, ..., M, where ∆t := T/M is the time step and M is a positive integer.

∂α(x, tm+1)

∂tα
=

1
Γ(1 − α)

∫ tm+1

t0

∂u(x, s)
∂s

ds
(tm+1 − s)α

=
1

Γ(1 − α)
=

m

∑
k=0

∫ tk+1

tk

∂u(x, s)
∂s

ds
(tm+1 − s)α

. (2.1)

For the forward finite difference, we have

∂u(x, s)
∂t

|(x,tk)=
u(x, tk+1)− u(x, tk)

∆t
+ O(∆t), (2.2)

Substituting (2.2) into (2.1), we obtain

∂α(x, tm+1)

∂tα
=

1
Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

∂u(x, tk+1)− u(x, tk)

∆t
ds

(tm+1 − s)α
+ Rk+1

∆t

=
1

Γ(1 − α)

m

∑
k=0

∂u(x, tk+1)− u(x, tk)

∆t

∫ tk+1

tk

ds
(tm+1 − s)α

+ Rk+1
∆t , (2.3)

where Rk+1
∆t is the truncation error, which we will get it later in proposition 2.1, for the integral

at the RHS of (2.3), we have
∫ tk+1

tk

ds
(tm+1 − s)α

= −
∫ tm+1−tk

tm+1−tk

p−αdp

=
(tm+1 − tk)

α − (tm+1 − tk+1)
1−α

1 − α
. (2.4)

By using tm = m∆t, we have

tm+1 − tk+1 = (m − k)∆t, tm+1 − tk = (m + 1 − k)∆t, (2.5)



An approximate solution for the (TFDEs) 17

Substituting (2.5) into (2.4), we obtain
∫ tk+1

tk

ds
(tm+1 − s)α

=
((m + 1 − k)∆t1−α)− ((m − k)∆t1−α)

1 − α

=
∆t1−α

1 − α
((m + 1 − k)1−α − (m − k)1−α, (2.6)

substituting (2.6) into (2.3), we obtain

∂αu(x, tm+1)

∂tα
=

∆−α(t)
(1 − α)(Γ(1 − α)

m

∑
k=0

am−k(u(x, tk+1)− u(x, tk)) + Rk+1
∆t

=
∆−α(t)

Γ(2 − α)

m

∑
k=0

am−k(u(x, tk+1)− u(x, tk)) + Rk+1
∆t . (2.7)

Here ak := (k + 1)1−α − k1−α, k = 0, 1, ..., M. Let γ = Γ(2 − α)∆tα. Substituting (2.7) into (1.1),
the following form is obtained

u(x, tm+1)− γ

(
∂2u(x, tm+1)

∂x2

)

=u(x, tm)−
m

∑
k=1

ak(u(x, tm−k+1 − u(x, tm−k)) + γ f (x, tm+1) + R(1)
∆t , (2.8)

where
R(1)

∆t ≤ C0∆t2,

and C0 is a constant.
Let um be the numerical solution to u(x, tm) and f m+1 = f (x, tm+1), by removing the small

term R(1)
∆t from (2.8), we can create the following discrete scheme for solving 1.1.

um+1 − γ

(
∂2um+1

∂x2

)
= um −

m

∑
k=1

ak(um−k+1 − um−k) + γ f m+1, m = 0, 1, ..., M. (2.9)

Proposition 2.1. The truncation error Rk+1
∆t has the following form

Rk+1
∆t ≤ C1

∣∣∣∣∣
1

Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

2s − tk+1 − tk

(tm+1 − s)α
ds + O(∆t2)

∣∣∣∣∣ ≤ C2∆t2−α, (2.10)

Where C1 and C2 are constant.

proof : First we show that

Rk+1
∆t ≤ C1

∣∣∣∣∣
1

Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

2s − tk+1 − tk

(tm+1 − s)α
ds + O(∆t2)

∣∣∣∣∣ .

By using the Taylor series, we have

u(x, tk+1)− u(x, tk)

∆t
=

∂u(x, tk)

∂t
+

∆t
2

∂2u(x, tk)

∂t2 + O(∆t2),

In addition, from (2.3), the truncation error has the following form

Rk+1
∆t =

1
Γ(1 − α)

∫ tk+1

tk

(
∂u(x, s)

s
− ∂u(x, tk)

∂t
− ∆t

2
∂2u(x, tk)

∂t2 + O(∆t)
)(

ds
(tm+1 − s)α

)
, (2.11)
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Now we write the Taylor expansion of ∂u(x,s)
∂s at tk

∂u(x, s)
∂s

=
∂u(x, tk)

∂t
+ (s − tk)

∂2u(x, tk)

∂t2 + O((s − tk)
2), (2.12)

Substituting (2.12) into (2.11), we obtain

Rk+1
∆t =

1
Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

(
(s − tk −

∆t
2
)

∂2u(x, tk)

∂t2 + O(∆t2)

)(
ds

(tm+1 − s)α

)

=
1

Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

(
2s − tk+1 − tk

2
∂2u(x, tk)

∂t2 + O(∆t2)

)(
ds

(tm+1 − s)α

)
,

the absolute value of the truncation error is as follows

Rk+1
∆t ≤ C1

∣∣∣∣∣
1

Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

2s − tk+1 − tk

2
∂2u(x, tk)

∂t2 ds + O(∆t2)

∣∣∣∣∣ ,

where C1 ≤ 1
2

∣∣∣ ∂2u(x,tk)
∂t2

∣∣∣.
Now, we show that

∣∣∣∣∣
1

Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

2s − tk+1 − tk

2
∂2u(x, tk)

∂t2 ds + O(∆t2)

∣∣∣∣∣ ≤ C2(∆t2−α).

We have

1
Γ(1 − α)

m

∑
k=0

∫ tk+1

tk

2s − tk+1 − tk

2
∂2u(x, tk)

∂t2 ds + O(∆t2)

= − 1
Γ(1 − α)

m

∑
k=0

1
Γ(1 − α)

(2k + 1)(∆t)2−α
[
(m − k)1−α − (m + 1 − k)1−α

]

+
1

Γ(1 − α)

m

∑
k=0

2
(1 − α)

(∆t)2−α
[
(k + 1)(m − k)1−α − k(m + 1 − k)1−α

]

+
1

Γ(1 − α)

m

∑
k=0

2
(1 − α)(2 − α)

(∆t)2−α
[
(m − k)2−α − (m + 1 − k)2−α

]

=
(∆t)2−α

Γ(2 − α)

[
(m + 1)1−α + 2(m1−α + (m − 1)1−α + (m − 2)1−α + ... + 11−α)

]

−2(∆t)2−α

Γ(3 − α)
(m + 1)2−α

=
(∆t)2−α

Γ(2 − α)

[
(m + 1)1−α + 2(m1−α + (m − 1)1−α + (m − 2)1−α + ... + 11−α)− 2

2 − α
(m + 1)2−α

]
.

Let

p(m) = (m + 1)1−α + 2(m1−α + (m − 1)1−α + (m − 2)1−α + ... + 11−α)− 2
2 − α

(m + 1)2−α.

We will show that the |p(m)| is bounded for all α ∈ [0, 1] and all m ≥ 1, as proven in the
following lemma.

Lemma 2.2. for all α ∈ [0, 1] and all m ≥ 1, we have

|p(m)| ≤ C3,

where C3 is a constant independent of α, m.
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Proof. First, for α = 0 and m ≥ 1, we will show that p(m) = 0.
We have

p(m) = (m + 1) + 2(m + (m − 1) + (m − 2) + ... + 1)− (m + 1)2

= m + 1 + 2
[m

2
(m + 1)

]
− (m + 1)2

= (m + 1)2 − (m + 1)2 = 0.

Now we prove for α ∈ (0, 1], we can write p(m) as follows

p(m) = (m+ 1)1−α + 2(m1−α +(m− 1)1−α +(m− 2)1−α + · · ·+ 11−α)− 2
2 − α

(m+ 1)2−α =
m

∑
i=0

bi,

where
bi = (i + 1)1−α + i1−α − 2

2 − α
((i + 1)2−α − i2−α).

It suffices to prove that the ∑∞
i=0 bi convergent. It is well known that the series

∞

∑
i=0

1
iβ

is a

geometric series and converges for all β > 1. Now we will show that the |bi| ≤ 1
i1+α for big

enough i. For i ≥ 2, we have

|bi| =i1−α

∣∣∣∣∣

(
1 +

1
i

)1−α

+ 1 − 2i
2 − α

((
1 +

1
i

)
− 1
)∣∣∣∣∣

=i1−α | 1 + 1 + (1 − α)
1
i
+

(1 − α)(−α)

2!
1
i2 +

(1 − α)(α)(−α − 1)
3!

1
i3 + . . .

− 2i
2 − α

(
−1 + 1 + (2 − α)

1
i
+

(2 − α)(1 − α)

2!
1
i2 +

(2 − α)(1 − α)(−α)

3!
1
i3 + . . .

)
|

=i1−α

∣∣∣∣
(

1
2!

− 2
3!

)
(1 − α)(−α)

1
i2 +

(
1
3!

− 2
4!

)
(1 − α)(−α)(−α − 1)

1
i3 + . . .

∣∣∣∣

≤i1−α 1
3!
(1 − α)α

1
i2

(
1 +

2(α + 1)
4

1
i
+

3(α + 1)(α + 2)
20

1
i2 + . . .

)

≤ 1
3!
(1 − α)α

1
i1+α

(
1 +

1
i
+

1
i2 +

1
i3 + . . .

)
≤ 2

3!
(1 − α)α

1
i1+α

≤ 1
i1+α

.

The proof is completed. □

3 Stability of the method

In this section, by using the following lemma, we will prove the proposed method is uncon-
ditionally stable, in other words, we will prove the stability of Eq. (2.9).

Lemma 3.1. [13] Let Ω be a bounded domain in Rn with piecewise smooth boundary ∂Ω, if V and U
are two functions defined on the closed region containing Ω and have continuous partial derivatives,
then ∫

Ω
V

∂U
∂xi

dΩ =
∫

∂Ω
VUcos(−→n , xi)dS −

∫

Ω
U

∂V
∂xi

dΩ, (3.1)

Where −→n is the outward vector, dS stands for the surface area element on ∂Ω.

Lemma 3.2. The coefficient, ai, satisfy
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1. ai > 0, i = 1, 2, ...

2. ai > ai+1, i = 0, 1, 2, ...

Proof. Let
s(i) := ai = (i + 1)1−α − i1−α, i = 0, 1, 2, ...

We have
s′(i) = (1 − α)[(i + 1)−α − i−α] < 0 ⇒ ai > ai+1, i = 0, 1, ...

□

Lemma 3.3. [30] If um ∈ H1
0 , m = 0, 1, .., M is the solution of (2.9), then

||um||2 ≤ ||u0||2 + γa−1
m−1 max

0≤l≤M
|| f l ||2.

Proof. We will prove this Lemma by mathematical induction. When m = 0, by using (2.9), we
will have

u1 − γ
∂u1

∂x2 = u0 + γ f 1.

Multiplying the above relation by u1 and integrating on Ω, we will obtain the following rela-
tion

(u1, u1)− γ(
∂2u1

∂x2 , u1) = (u0, u1) + γ( f 1, u1),

i.e.

||u1||22 − γ

(
∂2u1

∂x2
1

, u1
)
= (u0, u1) + γ( f 1, u1). (3.2)

By using Lemma 3.1, we get

(
∂2u1

∂x1
2 , u1) =

∫

Ω

∂

∂x1

(
∂u1

∂x1

)
u1dΩ =

∫

∂Ω

∂u1

∂x1
u1ds

︸           ︷︷           ︸
0

−
∫

Ω

∂u1

∂x1

∂u1

∂x1
dΩ

= −
∫

Ω

∂u1

∂x1

∂u1

∂x1
dΩ = −(

∂u1

∂x1
,

∂u1

∂x1
), (3.3)

Substituting (3.3) into (3.2), we obtain

||u1||22 + γ

(
∂2u1

∂x2
1

,
∂2u1

∂x2
1

)
= (u0, u1) + γ( f 1, u1), (3.4)

Since γ > 0 and
(

∂2u1

∂x2
1

, ∂2u1

∂x2
1

)
≥ 0, we will rewrite the (3.4), as follows

||u1||22 ≤ (u0, u1) + λ( f 1, u1),

using Schwarz inequality, we get

||u1||2 ≤ ||u0||2 + γ|| f 1||2 ≤ ||u0||2 + γa−1
0 max

0≤l≤M
|| f l ||2.

Suppose now we have

||uk||2 ≤ ||u0||2 + γa−1
k−1 max

0≤l≤M
|| f l ||2, k = 1, 2, . . . , m. (3.5)
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Multiplying (2.9) by um+1 and integrating on Ω, we will obtain

||um+1||22 − γ(
∂2um+1

∂x2
m+1

, um+1) = (1−a1)(um, um+1) +

(
m−1

∑
k=1

(ak − ak+1)um−k, um+1

)

+ (amu0, um + 1) + γ( f m+1, um+1),

By using Schwarz inequality and the inequality in Lemma 3.2

ak ≥ ak+1, k = 1, 2, ..., m.

We obtain

||um+1||2 ≤ (1 − a1)||um||2 +
m−1

∑
k=1

(ak − ak+1)||um−k||2 + am||u0||2 + γ|| f m+1||2.

By using (3.5), we get

||um+1||2 ≤ ||u0||2 +
(

m−1

∑
k=1

(ak − ak+1)a−1
m−k−1 + 1

)
max

0≤l≤M
||γ f l ||2

≤ ||u0||2 +
(

m−1

∑
k=1

(ak − ak+1)a−1
m + 1

)
max

0≤l≤M
||γ f 1||2

≤ ||u0||+ γa−1
m max

0≤l≤M
|| f l ||2.

Hence, the proof is completed. □

Now, we will prove the stability theorem, to simplify the notations without loss of gener-
ality, let Um be an exact solution of (2.9), we consider the case f ≡ 0 in stability analysis.

Theorem 3.4 (Stability theorem). The numerical implicit method defined by (2.9), is unconditionally
stable.

Proof. Denote the error:

ξm = Um − um, (3.6)

It satisfies

ξm+1 − γ
∂2ξm+1

∂2xm+1 = (1 − a1)ξ
m +

m−1

∑
k=1

(ak − ak+1)ξ
m−k + amξ0, (3.7)

and

ξm+1|∂Ω = 0, t ∈ [0, T].

By using Lemma 3.1, similar to the proof of Lemma 3.3, we will obtain

||ξm||2 ≤ ||ξ0||2, m = 1, 2, ..., M. (3.8)

This proves the theorem. □
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4 Convergence of the method

In this section, we will show that the approximate solution converges to the exact solution
with order O(∆t2−α) and we will obtain an error bound for the time discrete scheme.

Theorem 4.1. Let um, m = 0, 1, 2, ..., M be the approximate solution of Eq. (2.9) and the u(x, tm), m =

0, 1, ..., M be the exact solution of Eq. (1.1) with the above initial and boundary condition, then we have
the following error estimates

||u(x, tm)− um||2 ≤ C⋆(∆t2−α), m = 1, 2, ..., M. (4.1)

Where C⋆ is, constant.

Proof. Denote
ϵm = u(x, tm)− um. (4.2)

From (2.8) and (2.9), we get

ϵm+1 − γ
∂2ϵm+1

∂2xm+1 = ϵm −
m

∑
k=1

ak(ϵ
m−k+1 − ϵm−k) + R1(∆t), (4.3)

ϵ0 = 0, ϵm|∂Ω = 0,

by using Lemma 3.3, we obtain

||ϵm||2 ≤ a−1
m−1 max

0≤l≤M
||Rl ||2 ≤ C3(∆t)2. (4.4)

Because

lim
m→∞

a−1
m−1m−α = lim

m→∞

m−α

m1−α − (m − 1)1−α
= lim

m→∞

1
m − (m − 1)(m/m − 1)α

=
1

1 − α
, (4.5)

thus, a−1
m−1(∆t)2 is bounded, from (4.4), we will obtain

||u(x, tm)− um||2 ≤ C⋆(∆t2−α), m = 1, 2, . . . , M. (4.6)

This proves the theorem. □

5 Numerical results

In this section, we present an example to verify our theoretical finding. In this example, we
will check the convergence of the numerical solution with respect to ∆t.

Example 5.1. We consider the same equation as that in [11]:

∂[αu(x, t)
∂tα

− ∂2u(x, t)
∂x2 = f (x, t), (x, t) ∈ [0, 1]× [0, 1], (5.1)

with
f (x, t) =

2
Γ(3 − α)

t2−αsin(2πx) + 4π2t2sin(2πx),

subject to the initial condition u0(x) = 0 and the homogeneous boundary conditions: u(0, t) =
u(1, t) = 0.
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Table 5.1: The error and the convergence rate for α = 0.1
M N The error Convergence rate
30 30 0.00355 −
60 60 8.90771 ∗ 10−4 1.99469
100 100 3.20611 ∗ 10−4 2.00041
150 150 1.42463 ∗ 10−4 2.00053
200 200 8.01563 ∗ 10−5 1.99910

Table 5.2: The error and the convergence rate for α = 0.5
M N The error Convergence rate
30 30 0.00358 −
60 60 9.05205 ∗ 10−4 1.98357
100 100 3.28401 ∗ 10−4 1.98497
150 150 1.47078 ∗ 10−4 1.98111
200 200 8.33012 ∗ 10−5 1.97614

The exact solution to the problem is given by u = t2sin(2πx). Taking ∆(t) = 1
M and h = 1

N ,
where N and M are the numbers of meshes in space and time, in this example, we use N = M.
The ∂2u(x,tm+1)

∂x2 is approximated as follows:

∂2u(x, tm+1)

∂x2 ≈ u(xn+1, tm+1)− 2u(xn, tm+1) + u(xn−1, tm+1)

h2 . (5.2)

The rates of convergence are computed by

rate =
Ln(enew/eold)

Ln ((∆t)new/(∆t)old)
.

The errors in our examples are denoted by max{|um −Um| : m = 1, 2, ..., M}. The convergence
rate and the errors for different α and M are presented in Tables (5.1-5.4). We can see that
the convergence rate for time is close to ∆t2. The numerical results are consistent with our
theoretical results in theorem 3.4. The comparison of the exact and approximate solutions
with α = 0.1 at different M and the comparison of the exact and approximate solutions with
α = 0.9 at different M are shown (see Figs5.1 and 5.2). All the calculations in this example are
performed using MATLAB 2016.

Table 5.3: The error and the convergence rate for α = 0.7
M N The error Convergence rate
30 30 0.00369 −
60 60 9.55878 ∗ 10−4 1.94872
100 100 3.56404 ∗ 10−4 1.93132
150 150 1.64371 ∗ 10−4 1.97877
200 200 9.55343 ∗ 10−5 1.88625



24 S. A. A. Mosavi

(a) M = 60 (b)

(c) M = 150 (d) M = 200

Figure 5.1: The comparison of the exact and approximate solutions with α = 0.1 at different
M for test problem 5.1.

Table 5.4: The error and the convergence rate for α = 0.9
M N The error Convergence rate
30 30 0.00400 −
60 60 0.00112 1.83650
100 100 4.53413 ∗ 10−4 1.77023
150 150 2.28800 ∗ 10−4 1.68684
200 200 1.43598 ∗ 10−4 1.61925
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(a) M = 60 (b) M = 100

(c) M = 150 (d) M = 200

Figure 5.2: The comparison of the exact and approximate solutions with α = 0.9 at different
M for test problem 5.1.
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6 Concluding remarks

In this paper, we studied an implicit discrete scheme to solve the time-fractional diffusion
equation. The error estimates and the stability of the proposed method are discussed. The
convergence rate of the proposed method was proved to be optimal. An example was pro-
vided to illustrate the capability and accuracy of the method. Constructing more efficient
algorithms is also our goal in future works.
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Abstract. This work defines M-Fuzzy Cone Metric Space, as a new metric space. It
also analyzes possible forms of contractive conditions and groups them accordingly to
set up generalized contractive conditions for self-mappings defined overM-fuzzy cone
metric spaces. We prove the existence of fixed points of these mappings and exhibit
the same through a suitable example.
Keywords: Fixed point, Cone, Triangular, Fuzzy contractive, Symmetric.
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1 Introduction

A self-mapping f , defined on a metric space (M, d), is said to be a contraction if for some k ∈
[0, 1), it fulfills the condition d( f (x), f (y)) ≤ kd(x, y), for all x, y ∈ M. Stefan Banach, a Polish
mathematician, used these contractions to bring out his fixed point theorem, a remarkable
finding, known as Banach Contraction Principle.

Theorem 1.1. (Banach [1])
(X, d) is a complete metric space and f : X → X is a contraction mapping. Thus, there exists a
constant r < 1 such that d( f (x), f (y)) ≤ rd(x, y) for each x, y ∈ X. From this, one draws three
conclusions:
(i) f has a unique fixed point, say x0;
(ii) For each x ∈ X the Picard sequence { f n(x)} converges to x0;
(iii) The convergence is uniform if X is bounded.

BCorresponding author. Email: jeya.math@gmail.com
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This principle has made a great impact in the domain of research. Since then, it has been
the origin of numerous findings as all these findings are its modifications. These modifi-
cations are made to the contractive conditions and the settings of the domain. One of the
remarkable extensions is due to Hardy and Rogers in the year 1973. His work is an extension
of Reich’s fixed point theorem.

Theorem 1.2. (Hardy and Rogers) [10]
Let (M, d) be a metric space and T a self-mapping of M satisfying the condition for x, y ∈ M

(1) d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + d(y, Tx) + f d(x, y),

where a, b, c, d, e, f are nonnegative and we set α = a + b + c + d + e + f . Then
(a) If M is complete and α < 1, T has a unique fixed point.
(b) If (1) is modified to the condition

(1′) d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + d(y, Tx) + f d(x, y),

and in this case, we assume M is compact, T is continuous and α = 1, then T has a unique fixed
point.

Likewise, the Banach Contraction Principle has seen numerous extensions and gener-
alizations. Besides, in the year 1965, Zadeh [19] made a great contribution to the field of
mathematics by introducing the definition of fuzzy set, an idea to handle uncertainties well.
Since then, new metrics are being discovered over fuzzy sets. A few fuzzy metrics, that
were found at the initial stage, can be found in [2, 4, 12, 13]. Making a slight change in the
definition of Kramosil and Michalek [13], George and Veeramani [5] present a fuzzy metric
space which is more adaptable due to its topological structure. In the year 2000, Gregori and
Sapena [7] defined fuzzy contractive mappings and proved fixed point theorems on both of
these fuzzy metric spaces

Sedghi and Shobe [16] presented M-fuzzy metric spaces in the year 2006. Huang and
Zhang [11] defined cone metric spaces as a generalization of metric spaces in the year 2007.
Combining the concept of cone metric spaces and fuzzy metric spaces [5], Oner et. al. [14]
came up with the concept of fuzzy cone metric spaces.

Here, we aim to presentM-fuzzy cone metric spaces in the sense of [16] and [14]. We also
define generalized fuzzy cone contractive conditions and prove some fixed point theorems
for self-mappings in the settings of M-fuzzy cone metric spaces.

2 Preliminaries

Definition 2.1. [14] Let E be a real Banach space and C be a subset of E. C is called a cone
if and only if:
[C1] C is closed, nonempty, and C is not equal to {0},
[C2] a, b ∈ R, a, b ≥ 0, c1, c2 ∈ C imply ac1 + bc2 ∈ C ,
[C3] c ∈ C and −c ∈ C imply c = 0.
The cones considered here are subsets of a real Banach space E and are with nonempty
interiors.
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Definition 2.2. AnM-Fuzzy Cone Metric Space (briefly,M-FCM Space) is a 3-tuple (Z ,M, ∗)
where Z is an arbitrary set, ∗ is a continuous t-norm, C is a cone and M a fuzzy set in
Z3 × int(C ) satisfying the following conditions: For all ζ, η, ω, u ∈ Z and c, c′ ∈ int(C ),
[MFC1] M(ζ, η, ω, c) > 0,
[MFC2] M(ζ, η, ω, c) = 1 if and only if ζ = η = ω,
[MFC3] M(ζ, η, ω, c) = M(p{ζ, η, ω}, c), where p is a permutation,
[MFC4] M(ζ, η, ω, c + c′) ≥ M(ζ, η, u, c) ∗M(u, ω, ω, c′),
[MFC5] M(ζ, η, ω, ·) : int(C ) → [0, 1] is continuous.
Here, M is called M-Fuzzy Cone Metric on Z . The function M(ζ, η, ω, c) denote the degree
of nearness between ζ, η and ω with respect to c.

Example 2.3. Let E = R2 and consider the cone C = {(c1, c2) ∈ R2 : c1 ≥ 0, c2 ≥ 0} in
E. Let the t-norm ∗ be defined by a ∗ b = ab. Define the function M : R3 × int(C ) → [0, 1]
by M(ζ, η, ω, c) = 1

e
|ζ−η|+|η−ω|+|ω−ζ|

∥c∥
, for all ζ, η, ω ∈ R and c ∈ int(C ). Then (R,M, ∗) is an

M-Fuzzy Cone Metric Space.

Definition 2.4. A symmetric M-FCM Space is an M-FCM Space (Z ,M, ∗) satisfying

M(η, ω, ω, c) = M(ω, η, η, c), for all η, ω ∈ Z and c ∈ int(C ).

Definition 2.5. Let (Z ,M, ∗) be an M-FCM Space. A self-mapping K : Z → Z is said to be
M-fuzzy cone contractive if there exists k ∈ (0, 1) such that

(
1

M(K(ζ),K(η),K(ω), c)
− 1
)
≤ k

(
1

M(ζ, η, ω, c)
− 1
)

,

for all ζ, η, ω ∈ Z and c ∈ int(C ).

Remark 2.6. In the above definition, k excludes the value zero, for if k = 0, then it is possible
to have (

1
M(K(ζ),K(η),K(ω), c)

− 1
)
>

(
1

M(ζ, η, ω, c)
− 1
)

,

for all distinct ζ, η, ω ∈ Z and c ∈ int(C ), and K cannot have any fixed point.

Definition 2.7. In anM-FCM Space (Z ,M, ∗), M is said to be triangular if, for all ζ, η, ω, u ∈
Z and c ∈ int(C ),

(
1

M(ζ, η, ω, c)
− 1
)
≤
(

1
M(ζ, η, u, c)

− 1
)
+

(
1

M(u, ω, ω, c)
− 1
)

.

Definition 2.8. Let (Z ,M, ∗) be anM-FCM Space. For u ∈ Z , r > 0 and c ∈ int(C ), the open
ball BC (u, r, c), with center at u and radius r, is defined by

BC (u, r, c) = {w ∈ Z : M(u, w, w, c) > 1 − r}.

Lemma 2.9. [18] For each c1 ∈ int(C ) and c2 ∈ int(C ), there exists c ∈ int(C ) such that
c1 − c ∈ int(C ) and c2 − c ∈ int(C ).

Theorem 2.10. Let (Z ,M, ∗) is anM-FCM Space. Then τC , defined hereunder, is a topology:

τC =

{
D ⊆ Z : a ∈ D if and only if there exists r ∈ (0, 1)

and c ∈ int(C ) such that BC (a, r, c) ⊂ D

}
.
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Proof. (i) It is obvious that ∅ ∈ τC and Z ∈ τC .
(ii) Suppose D1 ∈ τC and D2 ∈ τC and a ∈ D1 ∩D2. Then a ∈ D1 and a ∈ D2.
Then, there exists r1, r2 ∈ (0, 1) and c1, c2 ∈ int(C ) such that

BC (a, r1, c1) ⊂ D1 and BC (a, r2, c2) ⊂ D2.

By Lemma 2.9, there exists c ∈ int(C ) such that c1 − c ∈ int(C ), c2 − c ∈ int(C ).
Let r = min{r1, r2}. Then BC (a, r, c) ⊂ BC (a, r1, c1) ∩BC (a, r2, c2) ⊂ D1 ∩D2.
Hence, D1 ∩D2 ∈ τC .
(iii) Let Dj ∈ τC for each j ∈ J, an index set, and let a ∈ Uj∈JDj. Then a ∈ Dj0 for some j0 ∈ J.
Hence, there exists r ∈ (0, 1) and c ∈ int(C ) such that BC (a, r, c) ⊂ Dj0 .
As Dj0 ⊂ Uj∈JDj, we have that BC (a, r, c) ⊂ Uj∈JDj.
Thus, Uj∈JDj ∈ τC .
From (i), (ii) and (iii), τC is a topology. □

Remark 2.11. [5] For any r1 > r2, there exists r3 such that r1 ∗ r3 ≥ r2 and for any r4 there
exists r5 ∈ (0, 1) such that r5 ∗ r5 ≥ r4, where r1, r2, r3, r4, r5 ∈ (0, 1).

Theorem 2.12. Let (Z ,M, ∗) be anM-FCM Space. Then (Z , τC ) is Hausdorff.

Proof. Let ζ, ω ∈ Z be distinct. Then 0 < M(ζ, ω, ω, c) < 1 for all c ∈ int(C ).
Let M(ζ, ω, ω, c) = r.
Now, for each r0 ∈ (r, 1), there exists r1 ∈ (0, 1) such that r1 ∗ r1 ≥ r0.
Suppose BC

(
ζ, 1 − r1, c

2

)
∩BC

(
ω, 1 − r1, c

2

)
is nonempty.

Then there exists z ∈ BC

(
ζ, 1 − r1, c

2

)
∩BC

(
ω, 1 − r1, c

2

)
and we have that

r = M(ζ, ω, ω, c) ≥ M
(

ζ, ω, ζ,
c
2

)
∗M

(
ζ, ω, ω,

c
2

)
≥ r1 ∗ r1 ≥ r0 > r.

This is a contradiction. Hence, BC

(
ζ, 1 − r1, c

2

)
∩BC

(
ω, 1 − r2, c

2

)
is empty.

Therefore, (ζ, τC ) is Hausdorff. □

Definition 2.13. Let (Z ,M, ∗) be an M-FCM Space, ζ ′ ∈ Z and {ζn} be a sequence in Z .

(i) {ζn} is said to converge to ζ ′ if for all c ∈ int(C ), limn→∞

(
1

M(ζn,ζ ′,ζ ′,c) − 1
)
= 0. It is

denoted by limn→∞ ζn = ζ ′ or by ζn → ζ ′ as n → ∞.

(ii) {ζn} is said to be a Cauchy sequence if for all c ∈ int(C ) and m ∈ N, we have that
limn→∞

(
1

M(ζn+m,ζn,ζn,c) − 1
)
= 0.

(iii) (Z ,M, ∗) is called a complete M-FCM space if every Cauchy sequence in Z converges.

Definition 2.14. Let (Z , M, ∗) be an M-FCM Space. A sequence {ζn} in Z is M-fuzzy cone
contractive if there exists k ∈ (0, 1) such that

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)
≤ k

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

, for all c ∈ int(C ).

Lemma 2.15. AnM-FCM Space (Z ,M, ∗) is symmetric.
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Proof. Let η, w ∈ Z and c ∈ int(C ). Then,

lim
r→0
M(η, η, ω, c + r) ≥ lim

r→0

(
M(η, η, η, r) ∗M(η, ω, ω, c)

)
,

lim
r→0
M(ω, ω, η, c + r) ≥ lim

r→0

(
M(ω, ω, ω, r) ∗M(ω, η, η, c)

)
.

These inequalities imply that

M(η, η, ω, c) ≥ M(η, ω, ω, c) and M(ω, ω, η, c) ≥ M(ω, η, η, c).

Hence, M(η, ω, ω, c) = M(ω, η, η, c). □

Lemma 2.16. Let (Z ,M, ∗) be an M-FCM Space, where M is triangular. Then any M-fuzzy cone
contractive sequence in Z is a Cauchy sequence.

Proof. Let the sequence {ζn} be M-fuzzy cone contractive in Z . Then, there exists k ∈ (0, 1),
such that (

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ k

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

. (2.1)

Since M is triangular, by Lemma(2.15), for m > n,

(
1

M(ζn, ζn, ζm, c)
− 1
)
≤
((

1
M(ζn, ζn, ζn+1, c)

− 1
)
+

(
1

M(ζn+1, ζn+1, ζm, c)
− 1
))

≤
((

1
M(ζn, ζn, ζn+1, c)

− 1
)
+

(
1

M(ζn+1, ζn+1, ζn+2, c)
− 1
)

+

(
1

M(ζn+2, ζn+2, ζm, c)
− 1
))

.

Continuing the process, and using (2.1), we finally arrive at

(
1

M(ζn, ζn, ζm, c)
− 1
)
≤


(

1
M(ζn,ζn,ζn+1,c) − 1

)
+
(

1
M(ζn+1,ζn+1,ζn+2,c) − 1

)

+ · · ·+
(

1
M(ζm−1,ζm−1,ζm,c) − 1

)



≤ kn
(

1
M(ζ0, ζ0, ζ1, c)

− 1
)
+ · · ·+ km−1

(
1

M(ζ0, ζ0, ζ1, c)
− 1
)

= (kn + · · ·+ km−1)

(
1

M(ζ0, ζ0, ζ1, c)
− 1
)

≤ kn

1 − k

(
1

M(ζ0, ζ0, ζ1, c)
− 1
)

. (2.2)

From (2.2), we have that
(

1
M(ζn,ζn,ζm,c) − 1

)
→ 0 as n → ∞.

Hence, {ζn} is a Cauchy sequence. □

3 Main Results

This section aims to prove the existence of fixed points of self-mappings under generalized
M-fuzzy cone contractive conditions in a complete M-FCM Space.
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Theorem 3.1. Let (Z ,M, ∗) be a complete M-FCM Space where M is triangular. If K : Z → Z is
such that, for all ζ, η, ω ∈ Z and c ∈ int(C ),

(
1

M(Kζ,Kη,Kω, c)
− 1
)
≤





k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,Kζ,Kζ,c) − 1
)
+

k3

(
1

M(η,Kω,Kω,c) − 1
)
+ k4

(
1

M(η,Kη,Kη,c) − 1
)
+

k5

(
1

M(ω,Kω,Kω,c) − 1
)
+ k6

(
1

M(ω,Kη,Kη,c) − 1
)
+

k7

(
1

M(η,Kζ,ω,c) − 1
)





, (3.1)

where ki ∈ [0, ∞], i = 1, . . . , 7 and ∑6
i=1 ki < 1. Then K has a fixed point and such a point is unique

if k1 + k7 < 1.

Proof. Let ζ0 ∈ Z be arbitrary. Generate a sequence {ζn} with ζn = Kζn−1 for n ∈ N. If there
exists a non-negative integer m such that ζm+1 = ζm, then Kζm = ζm and ζm becomes a fixed
point of K.
Suppose ζn , ζn−1 for any n ∈ N.
From (3.1),
(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤
(

1
M(Kζn−1,Kζn,Kζn, c)

− 1
)

≤





k1

(
1

M(ζn−1,ζn,ζn,c) − 1
)
+ k2

(
1

M(ζn−1,Kζn−1,Kζn−1,c) − 1
)

+k3

(
1

M(ζn,Kζn,Kζn,c) − 1
)
+ k4

(
1

M(ζn,Kζn,Kζn,c) − 1
)

+k5

(
1

M(ζn,Kζn,Kζn,c) − 1
)
+ k6

(
1

M(ζn,Kζn,Kζn,c) − 1
)

+k7

(
1

M(ζn,Kζn−1,Kζn,c) − 1
)





=





k1

(
1

M(ζn−1,ζn,ζn,c) − 1
)
+ k2

(
1

M(ζn−1,ζn,ζn,c) − 1
)

+k3

(
1

M(ζn,ζn+1,ζn+1,c) − 1
)
+ k4

(
1

M(ζn,ζn+1,ζn+1,c) − 1
)

+k5

(
1

M(ζn,ζn+1,ζn+1,c) − 1
)
+ k6

(
1

M(ζn,ζn+1,ζn+1,c) − 1
)

+k7

(
1

M(ζn,ζn,ζn,c) − 1
)





=





(k1 + k2)
(

1
M(ζn−1,ζn,ζn,c) − 1

)

+(k3 + k4 + k5 + k6)
(

1
M(ζn,ζn+1,ζn+1,c) − 1

)
.



 .

Hence, we have that
(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ k1 + k2

1 − (k3 + k4 + k5 + k6)

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

. (3.2)

Put k = k1+k2
1−(k3+k4+k5+k6)

. Then, k < 1 and (3.2) becomes
(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ k

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

. (3.3)

(3.3) makes the sequence {ζn} M-fuzzy cone contractive. Hence, by Lemma(2.16), {ζn} is
Cauchy in Z . As Z is complete, there exists ζ ′ ∈ Z such that

lim
n→∞

(
1

M(ζn, ζ ′, ζ ′, c)
− 1
)
= 0. (3.4)
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By repeated application of (3.3), we obtain that
(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ kn

(
1

M(ζ0, ζ1, ζ1, c)
− 1
)

.

Therefore, we have that

lim
n→∞

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)
= 0. (3.5)

Now,
(

1
M(ζn+1,Kζ ′,Kζ ′, c)

− 1
)
=

(
1

M(Kζn,Kζ ′,Kζ ′, c)
− 1
)

≤





k1

(
1

M(ζn,ζ ′,ζ ′,c) − 1
)
+ k2

(
1

M(ζn,Kζn,Kζn,c) − 1
)

+k3

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)
+ k4

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)

+k5

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)
+ k6

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)

+k7

(
1

M(ζ ′,Kζn,ζ ′,c) − 1
)





=





k1

(
1

M(ζn,ζ ′,ζ ′,c) − 1
)
+ k2

(
1

M(ζn,ζn+1,ζn+1,c) − 1
)

+k3

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)
+ k4

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)

+k5

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)
+ k6

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)

+k7

(
1

M(ζ ′,ζn+1,ζ ′,c) − 1
)





→ k′
(

1
M(ζ ′,Kζ ′,Kζ ′, c)

− 1
)

as n → ∞,

where k′ = k3 + k4 + k5 + k6, since by (3.4) and (3.5).

Hence,

lim
n→∞

sup
(

1
M(ζn+1,Kζ ′,Kζ ′, c)

− 1
)
≤ k′

(
1

M(ζ ′,Kζ ′,Kζ ′, c)
− 1
)

. (3.6)

As M is triangular,
(

1
M(Kζ ′,Kζ ′, ζ ′, c)

− 1
)
≤
(

1
M(Kζ ′,Kζ ′, ζn+1, c)

− 1
)
+

(
1

M(ζn+1, ζ ′, ζ ′, c)
− 1
)

. (3.7)

From (3.5) to (3.7), we can bring that
(

1
M(Kζ ′,Kζ ′, ζ ′, c)

− 1
)
≤ k′

(
1

M(ζ ′,Kζ ′,Kζ ′, c)
− 1
)

.

This gives,
(

1
M(Kζ ′,Kζ ′,ζ ′,t) − 1

)
= 0 since k′ < 1, and, hence we have

Kζ ′ = ζ ′.

Thus, we can conclude that ζ ′ is a fixed point of K. Suppose Kζ ′′ = ζ ′′. From (3.1),

(
1

M(Kζ ′,Kζ ′′,Kζ ′′, c)
− 1
)
≤





k1

(
1

M(ζ ′,ζ ′′,ζ ′′,c) − 1
)
+ k2

(
1

M(ζ ′,Kζ ′,Kζ ′,c) − 1
)

+k3

(
1

M(ζ ′′,Kζ ′′,Kζ ′′,c) − 1
)
+ k4

(
1

M(ζ ′′,Kζ ′′,Kζ ′′,c) − 1
)

+k5

(
1

M(ζ ′′,Kζ ′′,Kζ ′′,c) − 1
)
+ k6

(
1

M(ζ ′′,Kζ ′′,Kζ ′′,c) − 1
)

+k7

(
1

M(ζ ′′,Kζ ′,ζ ′′,c) − 1
)





.
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This gives that
(

1
M(ζ ′, ζ ′′, ζ ′′, c)

− 1
)
≤ (k1 + k7)

(
1

M(ζ ′, ζ ′′, ζ ′′, c)
− 1
)

.

Therefore,
(

1
M(ζ ′,ζ ′′,ζ ′′,c) − 1

)
= 0, if k1 + k7 < 1.

Hence, we can conclude that K has a unique fixed point if k1 + k7 < 1. □

Example 3.2. Let Z = [0, ∞) with metric d defined by d(ζ, η) = |ζ − η| for all ζ, η ∈ Z and
let C = R+. Define the t-norm ∗ by i ∗ j = min{i, j}. Define M by

M(ζ, η, ω, c) =
c

c + (|ζ − η|+ |η − ω|+ |ω − ζ|) ,

for all ζ, η, ω ∈ Z and t ∈ int(C ).
Then, it is clear that (Z ,M, ∗) is a complete M-FCM Space, and, that M is triangular.

Consider the self-mapping, K : Z → Z , given by Ku =

{
5
4 u + 3, u ∈ [0, 1],
3
4 u + 7

2 , u ∈ [1, ∞).
Then, (

1
M(Kζ,Kη,Kω, c)

− 1
)
=

5
4

(
1

M(ζ, η, ω, c)
− 1
)

,

where ζ, η, ω ∈ [0, 1]. Hence K is notM-fuzzy cone contractive. Therefore, we cannot assure
the existence of fixed points using the contraction theorem. But, here K satisfies the condition
(3.1) with

k1 =
3
80

, k2 =
17
80

, k3 = k4 = k5 =
1
20

, k6 = 0, k7 =
1

20
.

Therefore, K has a unique fixed point and this point is u = 14.

Corollary 3.3. Let (Z ,M, ∗) be a complete M-FCM Space where M is triangular. If K : Z → Z is
such that for all ζ, η, ω ∈ Z , c ∈ int(C ),

(
1

M(Kζ,Kη,Kω, c)
− 1
)
≤





k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,Kζ,Kζ,c) − 1
)

+k3

(
1

M(η,Kω,Kω,c) − 1
)
+ k4

(
1

M(η,Kζ,ω,c) − 1
)


 ,

where ki ∈ [0, ∞], i = 1, . . . , 4 and k1 + k2 + k3 < 1. Then K has a fixed point and such a point is
unique if k1 + k4 < 1.

Corollary 3.4. Let (Z ,M, ∗) be a completeM-FCM Space, whereM is triangular. If K : Z → Z is
such that for all ζ, η, ω ∈ Z , c ∈ int(C ),

(
1

M(Kζ,Kη,Kω, c)
− 1
)
≤





k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,Kζ,Kζ,c) − 1
)

+k3

(
1

M(η,Kω,Kω,c) − 1
)
+ k4

(
1

M(η,Kη,Kη,c) − 1
)

+k5

(
1

M(ω,Kω,Kω,c) − 1
)
+ k6

(
1

M(ω,Kη,Kη,c) − 1
)





,

where ki ∈ [0, ∞], i = 1, . . . , 6 and ∑6
i=1 ki < 1. Then K has a unique fixed point.

Corollary 3.5. Let (Z ,M, ∗) be a complete M-FCM Space, where M is triangular. If K : Z → Z
satisfies (3.1) with ∑7

i=1 ki < 1, then K has a unique fixed point.



Generalized contraction theorems inM-fuzzy cone metric spaces 37

The following theorem gives a more generalized contractive condition which considers
almost all forms of possible restrictions.

Theorem 3.6. Let (Z ,M, ∗) be a complete M-FCM Space, where M is triangular. If K : Z → Z is
such that for all ζ, η, ω ∈ Z , c ∈ int(C ),

(
1

M(Kζ,Kη,Kω, c)
− 1
)
≤





k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,Kζ,ω,c) − 1
)

+k3

(
1

M(ζ,ζ,Kζ,c) − 1
)
+ k4

(
1

M(ζ,Kζ,Kζ,c) − 1
)

+k5

(
1

M(η,Kη,ω,c) − 1
)
+ k6

(
1

M(η,Kω,ω,c) − 1
)

+k7

(
1

M(Kζ,Kη,ω,c) − 1
)
+ k8

(
1

M(Kζ,Kω,η,c) − 1
)

+k9

(
1

M(η,η,Kη,c) − 1
)
+ k10

(
1

M(ω,ω,Kω,c) − 1
)

+k11

(
1

M(η,Kη,Kη,c) − 1
)
+ k12

(
1

M(ω,Kω,Kω,c) − 1
)

+k13

(
1

M(ω,Kη,Kη,c) − 1
)
+ k14

(
1

M(η,Kω,Kω,c) − 1
)

+k15

(
1

M(Kη,Kω,ζ,c) − 1
)
+ k16

(
1

M(ζ,Kη,ω,c) − 1
)





, (3.8)

where ki ∈ [0, ∞], i = 1, . . . , 16 and k1 + · · ·+ k14 + 2(k15 + k16) < 1. Then K has a unique fixed
point.

Proof. Let ζ0 ∈ Z be arbitrary. Generate a sequence {ζn} with ζn = Kζn−1 for n ∈ N. If
there exists a non-negative integer m such that ζm+1 = ζm, then Kζm = ζm and ζm becomes
a fixed point of K.
Suppose ζn , ζn−1 for any n ∈ N.
As M is triangular,
(

1
M(ζn+1, ζn+1, ζn−1, c)

− 1
)
≤
(

1
M(ζn−1, ζn−1, ζn, c)

− 1
)
+

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)

,

(3.9)
(

1
M(ζn−1, ζn, ζn+1, c)

− 1
)
≤
(

1
M(ζn−1, ζn, ζn, c)

− 1
)
+

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)

.

(3.10)

Using (3.8) as in Theorem(3.1), together with (3.9) to (3.10), we arrive at
(

1
M(ζn, ζn+1, ζn+1, c)

− 1
)
≤ k1 + · · ·+ k4 + k15 + k16

1 − (k5 + · · ·+ k16)

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

.

Putting k = k1+···+k4+k15+k16
1−(k5+···+k16)

, the above inequality becomes

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)
≤ k

(
1

M(ζn−1, ζn, ζn, c)
− 1
)

. (3.11)

And, this makes the sequence {ζn} M-fuzzy cone contractive. Hence, by Lemma 2.16, {ζn}
is Cauchy in Z . As Z is complete, there exists ζ ′ ∈ Z such that

lim
n→∞

(
1

M(ζn, ζ ′, ζ ′, c)
− 1
)
= 0. (3.12)
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By repeated application of (3.11), we obtain that

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)
≤ kn

(
1

M(ζ0, ζ1, ζ1, c)
− 1
)

,

lim
n→∞

(
1

M(ζn, ζn+1, ζn+1, c)
− 1
)
= 0. (3.13)

From (3.8),
(

1
M(ζn+1,Kζ ′,Kζ ′, c)

− 1
)
=

(
1

M(Kζn,Kζ ′, ζ ′, c)
− 1
)
≤ k′

(
1

M(Kζ ′,Kζ ′, ζ ′, c)
− 1
)

,

where k′ = k5 + · · ·+ k16.
Hence,

lim
n→∞

sup
(

1
M(ζn+1,Kζ ′,Kζ ′, c)

− 1
)
≤ k′

(
1

M(Kζ ′,Kζ ′, ζ ′, c)
− 1
)

.

As M is triangular,

(
1

M(ζ ′,Kζ ′,Kζ ′, c)
− 1
)
≤
(

1
M(Kζ ′,Kζ ′, ζn+1, c)

− 1
)
+

(
1

M(ζn+1, ζ ′, ζ ′, c)
− 1
)

. (3.14)

From (3.13) and (3.14), we can bring that

(
1

M(ζ ′,Kζ ′,Kζ ′, c)
− 1
)
≤ k′

(
1

M(ζ ′,Kζ ′,Kζ ′, c)
− 1
)

.

This gives that
(

1
M(ζ ′,Kζ ′,Kζ ′,c) − 1

)
= 0, as k′ < 1, and, hence we have Kζ ′ = ζ ′. Thus, we

can conclude that ζ ′ is a fixed point of K.
Suppose Kζ ′′ = ζ ′′. Then from (3.8) and by Lemma 2.15,

(
1

M(ζ ′, ζ ′′, ζ ′′, c)
− 1
)
≤ k

′′
(

1
M(ζ ′, ζ ′′, ζ ′′, c)

− 1
)

,

where k
′′
= k1 + k2 + k7 + k8 + k15 + k16.

This implies
(

1
M(ζ ′,ζ ′′,ζ ′′,c) − 1

)
= 0, as k

′′
< 1, and hence we have ζ ′ = ζ ′′.

Thus, we can conclude that K has a unique fixed point. □

Corollary 3.7. Let (Z ,M, ∗) be a completeM-FCM Space, whereM is triangular. If K : Z → Z is
such that for all ζ, η, ω ∈ Z , c ∈ int(c),

(
1

M(Kζ,Kη,Kω, c)
− 1
)
≤





k1

(
1

M(ζ,η,ω,c) − 1
)
+ k2

(
1

M(ζ,Kζ,ω,c) − 1
)
+

k3

(
1

M(Kζ,Kη,ω,c) − 1
)
+ k4

(
1

M(η,Kω,Kω,c) − 1
)
+

k5

(
1

M(Kη,Kω,ζ,c) − 1
)
+ k6

(
1

M(ζ,Kη,ω,c) − 1
)





,

where ki ∈ [0, ∞], i = 1, . . . , 6 and k1 + k2 + k3 + k4 + 2(k5 + k6) < 1. Then K has a unique fixed
point.
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Conclusion:

We constructed some fixed point theorems as an extension of Banach contraction theorem by
giving a general form of contractive conditions for self-mappings and proved the existence
of fixed points for these self-mappings.
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Abstract. In this paper, we consider a two-patch model coupled by migration terms,
where each patch follows a Richards law. First, we prove the global stability of the
model. Second, in the case when the migration rate tends to infinity, the total carrying
capacity is given, which in general is different from the sum of the two carrying ca-
pacities and depends on the parameters of the growth rate and also on the migration
terms. Using the theory of singular perturbations, we give an approximation of the
solutions of the system in this case. Finally, we determine the conditions under which
fragmentation and migration can lead to a total equilibrium population which might
be greater or smaller than the sum of two carrying capacities and we give a complete
classification for all possible cases. The total equilibrium population formula for a
large migration rate plays an important role in this classification. We show that this
choice of local dynamics has an influence on the effect of dispersal. Comparing the
dynamics of the total equilibrium population as a function of the migration rate with
that of the logistic model, we obtain the same behavior. In particular, we have only
three situations that the total equilibrium population can occur: it is always greater
than the sum of two carrying capacities, always smaller, and a third case, where the
effect of dispersal is beneficial for lower values of the migration rate and detrimental
for the higher values. We end by examining the two-patch model where one growth
rate is much larger than the second one, we compare the total equilibrium population
with the sum of the two carrying capacities.

Keywords: Population dynamics, Richards Model, Asymmetric dispersal, Singular
Perturbation.
2020 Mathematics Subject Classification: 92B05, 92D25, 34D15, 34D05.

1 Introduction

Population dynamics is a wide field of mathematics, which contains many problems, among
them the effect of migration on the general dynamics of the population. Bibliographies can
be found in the work of Levin [18, 19] and Holt [15]. There are ecological situations that
motivate the representation of space as a finite set of patches connected by migrations, for

BCorresponding author. Email: elbetchbilal@gmail.com



42 B. Elbetch

instance, an archipelago with bird populations and predators. It is an example of insular
biogeography. A reference work on mathematical models is the book of Levin, Powell and
Steele [20], whereas Hanski and Gilpin [13] give a more ecological account of the subject.
The standard question in this type of biomathematical problem is to study the effect of
migration on the general population dynamics, and the consequences of fragmentation on
the persistence or extinction of the population.

The simplest realistic model of population dynamics is the one with exponential growth

dx
dt

= rx,

where r is the intrinsic growth rate. To remove unrestricted growth, Verhulst [33] considered
that a stable population would have a saturation level characteristic of the environment. To
achieve this the exponential model was augmented by a multiplicative factor 1 − x

K , which
represents the fractional deficiency of the current size from the saturation level K. In Lotka’s
analysis [21] of the logistic growth concept, the rate of population growth dx/dt, at any
moment t is a function of the population size at that moment, x(t), namely,

dx
dt

= f (x).

Since a zero population has zero growth, x = 0 is an algebraic root of the function f (x). By
expanding f as a Taylor series near x = 0 and setting f (0) = 0, Lotka obtained the following
power series: f (x) = x( f ′(0) + x

2 f ′′(0)), where higher terms are assumed negligible. By
setting f ′(0) = r and f ′′(0) = −2r/K , where r is the intrinsic growth rate of the population
and K is the carrying capacity, one is led to the Verhulst logistic equation

dx
dt

= rx
(

1 − x
K

)
. (1.1)

Turner and co-authors [32] proposed a modified Verhulst logistic equation (1.1) which they
termed the generic growth function. It has the form

dx
dt

= rx1+µ2(1−µ3)
[
1 −

( x
K

)µ2
]µ3

, (1.2)

where µ2, µ3 are positive exponents and µ2 < 1 + 1
µ3

.
Blumberg [4] introduced another growth equation based on a modification of the Ver-

hulst logistic growth equation (1.1) to model population dynamics or organ size evolution.
Blumberg observed that the major limitation of the logistic curve was the inflexibility of the
inflection point. Blumberg, therefore, introduced what he called the hyperlogistic function,
accordingly

dx
dt

= rxµ1
(

1 − x
K

)µ3
. (1.3)

Blumberg’s equation (1.3) is consistent with the Turner and co-author’s generic equation (1.2)
when µ1 = 2 − µ3, µ3 < 2, and µ2 = 1. Von Bertalanffy [3] introduced his growth equation
to model fish weight growth. He proposed the form given below which can be seen to be a
special case of the Bernoulli differential equation:

dx
dt

= rx
2
3

[
1 −

( x
K

) 1
3
]

. (1.4)
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The Turner model does not contain the Bertalanffy one, as the values of the exponents µ1 =
2/3, µ2 = 1/3, µ3 = 1, violate the condition µ1 = 1 + µ2(1 − µ3) stipulated by Turner et al.
[32]. It cannot therefore be seen as a special case of Blumberg’s equation (1.3). Richards [27]
extended the growth equation developed by Von Bertalanffy to fit empirical plant data.

Richards’s suggestion was to use the following equation which is also a Bernoulli differ-
ential equation

dx
dt

= rx
[
1 −

( x
K

)µ2
]

. (1.5)

Unlike its Von Bertalanffy antecedent however, the Richards growth function does follow
from the Turner model (1.2) in the case where µ3 = 1. For µ2 = 1, (1.5) trivially reduces to
the Verhulst logistic growth equation (1.1), but for µ2 > 1 the maximum slope of the curve
is when x > K/2, and when 0 < µ2 < 1, the maximum slope of the curve is when x < K/2.
This allows a wider range of curves to be produced, but as µ2 tends towards zero, the lowest
value of x at the point of inflexion remains greater than K/e, where e represents the universal
constant, the base of the natural logarithm. In fact, as µ2 tends towards zero the Richards
growth curve tends towards the Gompertz growth curve, which can be derived from the
following form of the logistic equation as a limiting case:

dx
dt

=
r

µ2
µ3

x
[
1 −

( x
K

)µ2
]µ3

=
r

Kµ2µ3
x
(

Kµ2 − xµ2

µ2

)µ3

.

When µ2 → 0, we obtain the growth rate modeled by the Gompertz function given by:

dx
dt

= rx
[
ln
( x

K

)]µ3
, (1.6)

with µ3 > 0 and µ3 , 1. This special case is more usually known as the hyper Gompertz,
generalized ecological growth function, or simply generalized Gompertz function. For µ3 = 1
the equation (1.6) is the ordinary Gompertz growth ( see [12, 24]).

In [31], Tsoularis et al. proposed a new growth rate that includes all the previous growth
rates given by:

dx
dt

= rxµ1
[
1 −

( x
K

)µ2
]µ3

, (1.7)

where µ1, µ2 and µ3 are positive real numbers. Unlike Lotka’s derivation of the Verhulst
logistic growth equation from the truncation of the Taylor series expansion of f (x) near
x = 0, (1.7) cannot be derived from such an expansion unless µ1, µ2 and µ3 are all positive
integers.

In 1977, Freedman and Waltman [9] consider a two-patch model with a single species in
logistic population growth as follows:





dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(x2 − x1),

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m(x1 − x2),

(1.8)

where xi represents the population density in patch i, the parameter ri is the intrinsic growth
rate, Ki is carrying capacity and m is the dispersal rate. Freedman and Waltman show that
under certain conditions, the total population abundance can be larger than the total carrying
capacities K1 +K2. Holt [15] generalized these results to a source-sink system. In 2015, Arditi
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et al. [1] gave a full mathematical analysis of the model (1.8) of Freedman and Waltman with
symmetric dispersal.

In 2018, Arditi et al. [2] extended the model (1.8) by considering asymmetric dispersal,
i.e. the model: 




dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m(m21x1 − m12x2),

(1.9)

where mm12 and mm21 with mij > 0, i , j and m ≥ 0, are the migration terms which describe
the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2
respectively. These flows can for example depend on the distance between the patches. By
noting that the positive equilibrium (x∗1 , x∗2) of model (1.9) is the unique positive solution to





r1x1

(
1 − x1

K1

)
+ r2x2

(
1 − x2

K2

)
= 0,

x2 = 1
m12

(
m21x1 − r1

m x1

(
1 − x1

K1

))
,

i.e., the intersection of an ellipse and a parabola, they used a graphical method to completely
analyze model (1.9) in order to determine when dispersal is either favorable or unfavorable
to total population abundance ( see Appendix B).

Wu et al. [35] studied the following two-patch source-sink model:




dx1

dt
= r1x1

(
1 − x1

K1

)
+ m(x2 − sx1),

dx2

dt
= r2x2

(
−1 − x2

K2

)
+ m(sx1 − x2),

(1.10)

where the parameter s reflects the dispersal asymmetry. The authors show that the dispersal
asymmetry can lead to either an increased total size of the species population in two patches,
a decreased total size with persistence in the patches, or even extinction in both patches.
They show also that for a large growth rate of the species in the source and a fixed dispersal
intensity:

• If the asymmetry is small, the population would persist in both patches and reach
a density higher than that without dispersal, in which the population approaches its
maximal density at an appropriate asymmetry.

• If the asymmetry is intermediate, the population persists in both patches but reaches a
density less than that without dispersal.

• If the asymmetry is large, the population goes to extinction in both patches, and asym-
metric dispersal is more favorable than symmetric dispersal under certain conditions.

Kang et al. [16] have considered a two-patch model with Allee effect and dispersal:
{

dx1
dt = r1x1 (x1 − θ) (1 − x1) + m(x2 − x1),

dx2
dt = r2x2 (x2 − θ) (1 − x2) + m(x1 − x2),

(1.11)

where x1 and x2 denote the population density in two patches. The parameters m ∈ [0, 1]
and θ represent the dispersal intensity and Allee threshold, respectively. It was shown that
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the dispersal parameter m and the Allee threshold θ will affect the global dynamics. Another
important two-patch model with additive Allee effect is proposed and studied in [5], given
by: 




dx1

dt
= −x1 + m(m12x2 − m21x1),

dx2

dt
= x2

(
1 − x2 −

σ

x2 + a

)
+ m(m21x1 − m12x2),

(1.12)

where the positive parameters σ and a are the Allee effect constants. Note that, the additive
Allee effect consists of two cases, i.e., weak and strong Allee effects. That is, if 0 < σ < a, it
is the weak Allee effect; if σ > a, it is the strong Allee effect. The authors show that dispersal
and Allee effect may lead to persistence or extinction in both patches. Also, by mathematical
analysis with numerical simulation, they verified that the total population abundance will
increase when the Allee effect constant a increases or σ decreases. And the total population
density increases when the dispersal rate m12 increases or the dispersal rate m21 decreases.
The reader may refer to [16, 22, 23, 25, 28] for more references and details on the effects of
dispersal on the total population in discrete space additive Allee effect. For more details
and information on the maximization of the total population with logistic growth in a multi-
patchy environment, the reader is referred to [7, 8, 11] and the references therein.

This paper is organized as follows: in Section 2, we introduce Richard’s model in two
patches. Next, in Section 3, we study the behavior of the system (2.1) in the case when the
migration rate goes to infinity using perturbation arguments. In Section 4, we compare the
total equilibrium population with the sum of the two carrying capacities for all parameter
space by using the same method as Arditi et al. [2]. In Section 5, two-patch model (2.1)
where one growth rate is much larger than the second one is considered, we compare the
total equilibrium population with the sum of two capacities in this case. In Appendix A,
we analyze the existence of equilibrium point by geometrical method and we prove also the
global stability of the system (2.1) and in Appendix B, we recall some result on two-patch
logistic model.

2 Two-patch Richards model

Taking the case of two patches, coupled by asymmetric migration terms, and assuming that
each patch follows the same Richards law (1.5), the two-patch Richards model can be written
in the following form:





dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

[
1 −

(
x2

K2

)µ]
+ m(m21x1 − m12x2),

(2.1)

where xi is the population in the patch i, the parameters ri and Ki are respectively the in-
trinsic growth rate and the carrying capacity in the patch i, and µ is a positive number. The
parameters mm12 and mm21 with m12 > 0 and m21 > 0, represent the migration terms which
describe the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the
patch 2 respectively. For µ = 1, the system (2.1) trivially reduces to Two-patch logistic model
(1.9). Note that the system (1.9) is studied in [1, 6, 9, 10, 15] in the case where the migration
rates satisfy m12 = m21, and in [2, 26] for general migration rates. Model (2.1) has always a
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unique positive equilibrium, again denoted by E∗(m) := (x∗1(m), x∗2(m)) which satisfies




0 = r1x∗1(m)

[
1 −

(
x∗1(m)

K1

)µ]
+ m(m12x∗2(m)− m21x∗1(m)),

0 = r2x∗2(m)

[
1 −

(
x∗2(m)

K2

)µ]
+ m(m21x∗1(m)− m12x∗2(m)).

The equilibrium E∗ is GAS in R2 \ {0} (see Appendix A). We thus define the total equilibrium
population at the positive equilibrium under dispersal rate , i.e.

X∗
T(m) = x∗1(m) + x∗2(m), (2.2)

as the total realized asymptotic population abundance.
The main aim of this paper is to study the effect of population dispersal on total popula-

tion size and to perform the mathematical analysis of the two-patch Richards model (2.1) in
the full parameter space. Thus, we extend [1, 2] by considering the case µ , 1.

3 The behavior of the model for a large migration rate

In this section, we aim to study the behavior of the system (2.1) for a large migration rate,
i.e. when m → ∞. We have the following result:

Theorem 3.1. Let E∗(m) be the positive equilibrium of the system (2.1). We then have :

lim
m→∞

E∗(m) =


 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2




1
µ

(m12, m21) . (3.1)

Proof. Denote E∗(∞) the limit (3.1). The equilibrium point E∗(m) of the system (2.1) is the
solution of the equation Fm = 0, where:

Fm(x1, x2) =
(

r1x1

[
1 −

(
x1
K1

)µ]
+ r2x2

[
1 −

(
x2
K2

)µ]
, r2x2

[
1 −

(
x2
K2

)µ]
+ m(m21x1 − m12x2)

)
.

(3.2)
When m → ∞, Equation (3.2) becomes:

F∞(x1, x2) =
(

r1x1

[
1 −

(
x1
K1

)µ]
+ r2x2

[
1 −

(
x2
K2

)µ]
, m21x1 − m12x2

)
. (3.3)

The solutions of the equation F∞ = 0 are given by 0 and E∗(∞). Therefore, to prove the
convergence of E∗(m) to E∗(∞), it suffices to prove that the origin cannot be a limit point of
E∗(m). We claim that for any m, there exists i ∈ {1, 2} such that x∗i (m) ≥ Ki, which entails
that E∗(m) is bounded away from the origin. If m12x∗2(m) ≤ m21x∗1(m) then we have

r2x∗2(m)

[
1 −

(
x∗2(m)

K2

)µ]
≤ 0,

and since x∗2 cannot be negative or 0, we have x∗2(m) ≥ K2. Therefore, E∗(m) → E∗(+∞) as
m → ∞. □

As a first corollary of the previous theorem we obtain the following result which describes
the total equilibrium population when m → ∞:
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Corollary 3.2. Consider the total equilibrium population (2.2). We have:

X∗
T(+∞) = (m12 + m21)


 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2




1
µ

. (3.4)

Notice that, the formula (3.4) shows that the total equilibrium population depends on the
migration terms m12, m21 and the parameter µ . For µ = 1, this formula was obtained for the
2-patch logistic model (1.9) by Freedman and Waltman [10, Theorem 1]. It was also obtained
by Arditi et al. [1, Formula (A.13)]. If the migration is symmetric (i.e. m12 = m21 ), then the
total equilibrium population (3.4) does not depend on the flux of migration m12 and m21 and
(3.4) becomes:

X∗
T(+∞) = 2


 r1 + r2

r1
Kµ

1
+ r2

Kµ
2




1
µ

.

In [1], Arditi et al. also obtained the formula (3.4), in the 2-patch case with logistic model
and symmetric migration, ( i.e. the system (1.9) with m12 = m21 = 1) by using singular
perturbation theory, see [1, Formula (A.13)]. They showed that, if (x1(t, m), x2(t, m)) is the
solution of (1.9), with initial condition (x0

1, x0
2), then, when m → ∞, the total population

x1(t, m) + x2(t, m) is approximated by X(t), the solution of the logistic equation:




dX
dt

= rX
(

1 − X
2K

)
,

X(0) = x0
1 + x0

2,
(3.5)

where r = r1+r2
2 , K = r1+r2

α1+α2
and αi = ri

Ki
. Therefore the total population behaves like the

unique logistic equation given by (3.5). In addition, one obtains the following property: with
the exception of a small initial interval, the populations density x1(t, m) and x2(t, m) are both
approximated by X(t)/2, see [1, Proposition 3]. Therefore, this approximation shows that,
when t and m tend to ∞, the density population xi(t, m) tends toward r1+r2

α1+α2 , and in addition,
xi(t, m) quickly jumps from its initial condition x0

i to the average X0/2 and then is very close
to X(t)/2. Our aim is to generalize this result for the 2-patch model (2.1) for all µ positive.
To avoid any confusion with X(t), which is the total population, we denote Z(t) the solution
of the equation (3.6), and we prove that X(t) is asymptotically equivalent, when m goes to
infinity, to Z(t). We have the following result

Theorem 3.3. Let (x1(t, m), x2(t, m)) be the solution of the system (2.1) with initial condition
(x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let Z(t) be the solution of the Richards equation





dX
dt

= rX
[

1 −
(

X
(m12 + m21)K

)µ]
,

X(0) = x0
1 + x0

2,
(3.6)

where r = m12r1+m21r2
m12+m21

and K =

[
m12r1+m21r2

mµ+1
12

r1
Kµ

1
+mµ+1

21
r2
Kµ

2

] 1
µ

. Then, when m → ∞, we have

x1(t, m) + x2(t, m) = Z(t) + om(1), uniformly for t ∈ [0,+∞) (3.7)
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and, for any t0 > 0, we have




x1(t, m) =
m12

m12 + m21
Z(t) + om(1),

x2(t, m) =
m21

m12 + m21
Z(t) + om(1) uniformly for t ∈ [t0,+∞).

(3.8)

Proof. Let X(t, m) = x1(t, m) + x2(t, m). We rewrite the system (2.1) using the variables
(X, x1). One obtains:





dX
dt

= r1x1

[
1 −

(
x1

K1

)µ]
+ r2(X − x1)

[
1 −

(
X − x1

K2

)µ]
,

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m (m12X − (m12 + m21)x1) .

(3.9)

When m → ∞, (3.9) is a slow-fast system, with one slow variable, X, and one fast variable x1.
According to Tikhonov’s Theorem [17, 30, 34] we consider the dynamics of the fast variable
in the time scale τ = mt. One obtains

dx1

dτ
=

1
m

r1x1

[
1 −

(
x1

K1

)µ]
+ m12X − (m12 + m21)x1.

In the limit m → ∞, we find the fast dynamics

dx1

dτ
= m12X − (m12 + m21)x1. (3.10)

The slow manifold is formed by the equilibrium points of the fast equation (3.10), which given
by:

x∗1 =
m12

m12 + m21
X. (3.11)

Since x∗1 is GAS for the system (3.10), the Theorem of Tikhonov ensures that after a fast
transition toward the slow manifold, the solutions of (3.9) are approximated by the solutions
of the reduced model which is obtained by replacing (3.11) into the dynamics of the slow
variable, that is:

dX
dt

= r1
m12

m12 + m21
X
[

1 −
(

m12X
(m12 + m21)K1

)µ]
+ r2

m21

m12 + m21
X
[

1 −
(

m21X
(m12 + m21)K2

)µ]
,

(3.12)

which gives the equation (3.6). Since (3.6) admits

X∗ = (m12 + m21)K = (m12 + m21)


 m12r1 + m21r2

mµ+1
12

r1
Kµ

1
+ mµ+1

21
r2
Kµ

2




1
µ

as a positive equilibrium point, which is GAS in the positive axis, the approximation given
by Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the
fast variable, where t0 is small as we want. Therefore, let Z(t) be the solution of the reduced
model (3.12) of initial condition Z(0) = X(0, m) = x0

1 + x0
2, then, when m → ∞, we have the

approximations (3.7) and (3.8). □
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In the case where the migration rate tends to infinity, the approximation (3.7) shows that
the total population behaves like a unique equation of Richards (3.6) and then, when t and
m tend to ∞, the total population x1(t, m) + x2(t, m) tends towards X∗

T(∞) defined by (3.4)
as stated in Corollary 3.2. The approximation (3.8) shows that, with the exception of a thin
initial boundary layer, where the density population x1(t, m) and x2(t, m) quickly jumps from
its initial condition x0

1 and x0
2 to m12X0/(m12 +m12) and m21X0/(m12 +m12) respectively. The

first ( resp. second) patch behaves like the single Richards equation

dz
dt

= rz
[

1 −
(

z
m12K

)µ] (
resp.

dz
dt

= rz
[

1 −
(

z
m21K

)µ])
, (3.13)

where r and K are defined in (3.6). Hence, when t and m tend to ∞, the density population
x1(t, m) and x2(t, m) tends toward m12K and m21K respectively, as stated in Theorem 3.1.

4 Influence of dispersal on the total population size

In [2], Arditi et al. have considered the system (1.9) and they showed that there are only three
cases that can occur: the case where the total equilibrium population is always greater than
the sum of carrying capacities, the case where it is always smaller, and a third case, where the
effect of dispersal is beneficial for lower values of the migration rate m and detrimental for
the higher values. More precisely, it was shown in [2], that the following trichotomy holds

• If X∗
T(+∞) > K1 + K2 then X∗

T(m) > K1 + K2 for all m > 0.

• If d
dm X∗

T(0) > 0 and X∗
T(+∞) < K1 + K2, then there exists m0 > 0 such that X∗

T(m) >
K1 + K2 for 0 < m < m0, X∗

T(m) < K1 + K2 for m > m0 and X∗
T(m0) = K1 + K2.

• If d
dm X∗

T(0) < 0, then X∗
T(m) < K1 + K2 for all m > 0.

Therefore, the condition X∗
T(m) = K1 + K2 holds only for m = 0 and at most for one positive

value m = m0. The value m0 exists if and only if d
dm X∗

T(0) > 0 and X∗
T(+∞) < K1 + K2.

In this section, we generalize the result of Arditi et al. [2] by considering the case where
µ , 1 in the system (2.1). We analyze the effect of dispersal on the total equilibrium pop-
ulation for the Richards system (2.1). Using the method of Arditi et al. [2], we describe the
position affects the equilibrium E∗(m) of (2.1) when the migration rate varies from zero to
infinity. The total equilibrium population X∗

T(+∞), given by equation (3.4), play a vary im-
portant role in the characterization of the different possible positions of the equilibrium E∗.
As for the 2-patch logistic model (1.9), we prove that exactly three cases can occur. More
precisely we have the following theorem:

Theorem 4.1. Consider the system (2.1). Let X∗
T(∞) be defined by (3.4). Then,

1. If r1 = r2, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

2. If r1 < r2, then

(a) If m21
m12

< K1
K2

, then

i. If X∗
T(∞) ≥ K1 + K2, then X∗

T(m) ≥ K1 + K2 for all m ≥ 0.
ii. If X∗

T(∞) < K1 + K2, there is an m0 > 0 such that:
A. If m < m0, then X∗

T(m) ≥ K1 + K2.
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B. If m ≥ m0, then X∗
T(m) ≤ K1 + K2 .

(b) If m21
m12

> K1
K2

, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

(c) If m21
m12

= K1
K2

, then X∗
T(m) = K1 + K2 for all m ≥ 0, i.e. the equilibrium E∗ does not

depend on m.

3. If r1 > r2, then

(a) If m21
m12

> K1
K2

, then

i. If X∗
T(∞) ≥ K1 + K2, then X∗

T(m) ≥ K1 + K2.
ii. If X∗

T(∞) < K1 + K2, there is a m0 > 0 such that:
A. If m < m0, then X∗

T(m) ≥ K1 + K2.
B. If m ≥ m0, then X∗

T(m) ≤ K1 + K2.

(b) If m21
m12

< K1
K2

, then X∗
T(m) ≤ K1 + K2 for all m ≥ 0.

(c) If m21
m12

= K1
K2

, then X∗
T(m) = K1 + K2 for all m ≥ 0, i.e. the equilibrium E∗ does not

depend on m.

Proof. First, we consider the line ∆ with Cartesian equation x1 + x2 = K1 + K2, of slope −1
and passing through the point A = (K1, K2). The equilibrium point E∗ is always on the curve
Cµ (see Appendix A). For m = 0, E∗ coincides with A. When m increases, E∗ describes an arc
of the curve Cµ and ends at point E∗(∞) given in equation (3.1).

1. The equation of the tangent line to the curve Cµ at the point A is given by:

(x1 − K1)
∂Φµ

∂x1
(A) + (x2 − K2)

∂Φµ

∂x2
(A) = 0, (4.1)

where the function Φµ is given by the equation (A.2). Since ∂Φµ

∂x1
(A) = −µr1 and

∂Φµ

∂x2
(A) = −µr2, Equation (4.1) becomes simply

r1x1 + r2x2 = r1K1 + r2K2. (4.2)

If r1 = r2 in the equation (4.2), the tangent space to the the curve Cµ at A is the line ∆.
By the concavity of Cµ, any point of Cµ lies below the line ∆. Therefore E∗(m) satisfies
x∗1(m) + x∗2(m) ≤ K1 + K2, for all m ≥ 0 ( see figure 4.1), which completes the proof of
item 1.

2. We suppose now that r1 < r2, then the line ∆ makes a second intersection with the

curve Cµ at a point noted C. This intersection is below the line Σ : x2 =
K2

K1
x1 ( as

shown in the figures 4.2, 4.3 and 4.4). When m → ∞, the curve Mm,µ defined by (A.3),
goes to the oblique line M∞,µ : x2 = m21

m12
x1. The intersection points between the line

M∞,µ and the curve Cµ are the origin and E∗(∞). If the line M∞,µ is below the line
Σ, that is m21/m12 < K1/K2, we have two possible cases for the relative positions of
the point E∗(∞) and the line ∆. In the case where E∗(∞) is above the line ∆, that is
X∗

T(∞) ≥ K1 + K2, then the equilibrium point start at point A and when m increases
from 0 to ∞, E∗(m) moves along the curve Cµ and ends at the point E∗(∞). Equivalently,
the total equilibrium population start, for m = 0, with the value K1 + K2 and satisfies
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O x1K1

K2

x2

A

∆

Figure 4.1: The illustration of item 1 of Theorem 4.1. The curve Cµ is shown in red for some
values of µ and the straight line ∆ in blue. The total equilibrium population is always smaller
than K1 + K2 for all m because it belongs to the curve Cµ.

O x1K1

K2

x2

A

∆

Σ

M∞,µ

E∗(∞)

C

Figure 4.2: The illustration of item (2.a.i) of Theorem 4.1. The curve Cµ is shown in red
for some values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green
respectively. The total equilibrium point is always greater than K1 + K2 for all m, because it
belongs to the curve Cµ and the limit point E∗(∞) is above ∆. As the migration rate increases
from 0 to ∞, the equilibrium point varies along the curve Cµ from A to E∗(∞).
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the inequality x∗1(m) + x∗2(m) ≥ K1 + K2 for all m, which completes the proof of item
(2.a.i). ( see figure 4.2).

In the case where E∗(∞) is below the line ∆, that is X∗
T(∞) < K1 + K2, the equilibrium

point E∗(m) start, for m = 0, at point A and when m increases from 0 to ∞, it moves
along the curve Cµ, passes through the point C for a certain m0 and ends at the point
E∗(∞). Therefore, the total equilibrium is greater than K1 + K2 for m < m0 and smaller
than K1 + K2 for all m ≥ m0, which completes the proof of item (2.a.ii) ( see figure 4.3).

O x1K1

K2

x2

A

∆

Σ

M∞,µ

E∗(∞)

C

Figure 4.3: The illustration of item (2.a-ii) of Theorem 4.1. The curve Cµ is shown in red
for some values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green
respectively. As the limit point E∗(∞) is above ∆, then, when the migration rate increases
from 0 to ∞, the equilibrium point varies along the curve Cµ from A to E∗(∞), passing
through the point C which is the other point of intersection between the curve Cµ and the
line ∆.

If the line M∞,µ is above the line Σ, that is m21/m12 > K1/K2, then the total equilibrium
population is smaller than the sum of carrying capacities for all m. This completes the
proof of item (2.b). ( see figure 4.4).

It is clear that if the two lines Σ and M∞,µ are identical, i.e. A = E∗(∞), then the total
equilibrium population does not depend on migration rate m. Therefore, x∗1(m) = K1
and x∗2(m) = K2 for all m ≥ 0. This gives the proof of item (2.c).

3. As the role of the variables of the system (2.1) is symmetrical, this case is analogous to
case 2.

□

According to the previous theorem, we concluded that, the dispersal can lead to an in-
creased or decreased the total equilibrium population with persistence in each patch.

Proposition 4.2. The derivative of the total equilibrium population X∗
T at m = 0 is given by:

dX∗
T

dm
(0) =

1
µ
(m12K2 − m21K1)

(
1
r1

− 1
r2

)
. (4.3)
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O x1K1

K2

x2

A

∆
ΣM∞,µ

E∗(∞)

Figure 4.4: The illustration of item (b) of Theorem 4.1. The curve Cµ is shown in red for some
values of µ, the straight lines ∆, Σ and M∞,µ are shown in blue, cyan and green respectively.
The total equilibrium is always smaller than K1 + K2 for all m.

In particular, dX∗
T

dm (0) = 0 if and only if, r1 = r2 or K1
K2

= m12
m21

.

Proof. The equilibrium point E∗(m) satisfies the system




0 = r1x∗1(m)
[
1 −

(
x∗1(m)

K1

)µ]
+ m(m12x∗2(m)− m21x∗1(m)),

0 = r2x∗2(m)
[
1 −

(
x∗2(m)

K2

)µ]
+ m(m21x∗1(m)− m12x∗2(m)).

(4.4)

Dividing the first and the second equation by r1
Kµ

1
x∗1(m) and r2

Kµ
2

x∗2(m) respectively, one obtains





x∗1(m) =


Kµ

1 + m
m12x∗2(m)− m21x∗1(m)

r1
Kµ

1
x∗1(m)




1
µ

,

x∗2(m) =

(
Kµ

2 + m
m21x∗1(m)− m12x∗2(m)

r2
Kµ

2
x∗2(m)

) 1
µ

.

(4.5)

Hence, the total equilibrium population X∗
T is given by

X∗
T(m) =


Kµ

1 + m
m12x∗2(m)− m21x∗1(m)

r1
Kµ

1
x∗1(m)




1
µ

+

(
Kµ

2 + m
m21x∗1(m)− m12x∗2(m)

r2
Kµ

2
x∗2(m)

) 1
µ

. (4.6)

By differentiating the equation (4.6) at m = 0, we get:

dX∗
T

dm
(0) =

1
µ


m12x∗2(0)− m21x∗1(0)

r1
Kµ

1
x∗1(0)


K1−µ

1 +
1
µ

(
m21x∗1(0)− m12x∗2(0)

r2
Kµ

2
x∗2(0)

)
K1−µ

2 , (4.7)

which gives (4.3), since x∗1(0) = K1 and x∗2(0) = K2. □
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Note that, the derivative (4.3) is dependent on all the parameters of the model. it is equal
to zero if and only if both patches have the same growth rates or m12K2 = m21K1, positive if
r1 < r2 and m12K2 > m21K1, or r1 > r2 and m12K2 < m21K1.

As a corollary of the previous theorem, we have the result:

Corollary 4.3. Let µi, i = 1, . . . , n, be a positive number such that 0 < µ0 < . . . < µn. Consider
the following systems:





dx1

dt
= r1x1

[
1 −

(
x1

K1

)µi
]
+ m(m12x2 − m21x1),

dx2

dt
= r2x2

[
1 −

(
x2

K2

)µi
]
+ m(m21x1 − m12x2),

(4.8)

where the parameters ri, Ki, m12 and m21 are as in (2.1). Let X∗
T(m, µi), i = 1, . . . , n be the

total equilibrium population of (4.8). Then, the sequence (X∗
T(m, µi))1≤i≤n is increasing. In

particular, when m → ∞, we have:

X∗
T(∞, µ1) < . . . < X∗

T(∞, µn).

Proof. The equilibrium point of the system (4.8) is always on the curve noted Cµi given by

Cµi : r1x1

[
1 −

(
x1

K1

)µi
]
+ r2x2

[
1 −

(
x2

K2

)µi
]
= 0.

These curves intersect at four points (0, 0), (0, K2), (K1, 0) and (K1, K2). If µi < µj for some i
and j, then the curve Cµi is below the curve Cµj as shown in the figure A.1 and in the others
figures 4.1, 4.2, 4.3 and 4.4. Therefore, the total equilibrium population X∗

T(m, µi) < X∗
T(m, µj)

for all m > 0 and for all i, j ∈ {1, . . . , n}. □

5 Two-patch model where one growth rate is much larger than the
second one

In this section, we consider the two-patch model (2.1) and we assume that the growth rate
in the second patch is much larger than in the first. For simplicity we denote m2 := m12 > 0
the migration rate from patch 2 to patch 1 and m1 := m21 > 0 from patch 1 to patch 2.
Mathematically, the model (2.1) is written under this assumption as follows:





dx1
dt = r1x1

[
1 −

(
x1
K1

)µ]
+ m (m2x2 − m1x1) ,

dx2
dt = r2

ϵ x2

[
1 −

(
x2
K2

)µ]
+ m (m1x1 − m2x2) ,

(5.1)

where ϵ is assumed to be a small positive number. We denote E∗(m, ϵ) = (x∗1(m, ϵ), x∗2(m, ϵ)),
the positive equilibrium of (5.1), which is GAS, and X∗

T(m, ϵ) := x∗1(m, ϵ) + x∗2(m, ϵ) the total
equilibrium. The behavior of the model (5.1) for perfect mixing (i.e. m → ∞) is given by the
following formula:

X∗
T(+∞, ϵ) = (m1 + m2)

(
ϵm2r1 + m1r2

ϵmµ+1
2 r1/Kµ

1 + mµ+1
1 r2/Kµ

2

) 1
µ

, (5.2)
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and the derivative of the total equilibrium population X∗
T(m, ϵ) at m = 0 becomes

dX∗
T

dt
(0, ϵ) =

1
µ
(m12K2 − m21K1)

(
1
r1

− ϵ

r2

)
. (5.3)

First, we have the result:

Theorem 5.1. Let (x1(t, ϵ), x2(t, ϵ)) be the solution of the system (5.1) with initial condition
(x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation

dx1

dt
= r1x1

[
1 −

(
x1

K1

)µ]
+ m(m2K2 − m1x1) =: φµ(x1), (5.4)

with initial condition z(0) = x0
1. Then, when ϵ → 0, we have

x1(t, ϵ) = z(t) + oϵ(1), uniformly for t ∈ [0,+∞) (5.5)

and, for any t0 > 0, we have

x2(t, ϵ) = K2 + oϵ(1), uniformly for t ∈ [t0,+∞). (5.6)

Proof. When ϵ → 0, the system (5.1) is a slow-fast system, with one slow variable, x1, and one
fast variable, x2. Tikhonov’s Theorem [17, 30, 34] prompts us to consider the dynamics of the
fast variable in the time scale τ = 1

ϵ t. One obtains

dx2

dτ
= r2x2

[
1 −

(
x2

K2

)µ]
+ ϵm(m1x1 − m2x2).

In the limit ϵ → 0, we find the fast dynamics

dx2

dτ
= r2x2

[
1 −

(
x2

K2

)µ]
. (5.7)

The slow manifold is given by the positive equilibrium of the system (5.7), i.e. x2 = K2, which
is GAS in the positive axis. When ϵ goes to zero, Tikhonov’s Theorem ensures that after a
fast transition toward the slow manifold, the solutions of (5.1) converge to the solutions of
the reduced model (5.4), obtained by replacing x2 = K2 into the dynamics of the slow variable.

The differential equation (5.4) admits unique positive equilibrium, which is GAS. Indeed,
we distinguish two cases according to sign of r1 − mm1. First, note that, if r1 − mm1 = 0, then
dφµ

dx1
(x1) = −(µ + 1) r1

Kµ
1

xµ
1 + r1 − mm1 = 0 if and only if x1 = 0.

If r1 − mm1 < 0, then dφµ

dx1
(x1) = −(µ + 1) r1

Kµ
1

xµ
1 + r1 − mm1 < 0, for all x1 ≥ 0. In addition,

φµ(0) > 0 and φµ → −∞ when x1 goes to infinity. So, there exists a unique positive solution
of φµ(x1) = 0. Denote x∗1(m, 0+) this solution. As φµ(x1) > 0 for all 0 ≤ x1 < x∗1(m, 0+) and
φµ(x1) < 0 for all x1 > x∗1(m, 0+) then, the equilibrium x∗1(m, 0+) is GAS in the positive axis.

If r1 − mm1 > 0, then dφµ

dx1
(x1) = 0 implies x̃1 :=

(
r1−mm1

(µ+1)r1/Kµ
1

) 1
µ
> 0. So φµ is increasing

on [0, x̃1[ and decreasing on ]x̃1, ∞[. In addition, φµ(0) > 0 and φµ → −∞ when x1 goes
to infinity. So, there exists unique positive solution of φµ(x1) = 0 denoted x∗1(m, 0+). As
φµ(x1) > 0 for all 0 ≤ x1 < x∗1(m, 0+) and φµ(x1) < 0 for all x1 > x∗1(m, 0+) then, the
equilibrium x∗1(m, 0+) is GAS in the positive axis. Therefore, the approximation given by
Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the
fast variable, where t0 is as small as we want. Therefore, if z(t) is the solution of the reduced
model (5.4) of initial condition z(0) = x0

1, then, when ϵ → 0, we have the approximations
(5.5) and (5.6). □
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As a corollary of the previous theorem, we have the following result which gives the limit
of the total equilibrium population X∗

T(m, ϵ) of the model (5.1) when ϵ goes to zero:

Corollary 5.2. We have:

X∗
T(m, 0+) := lim

ϵ→0
X∗

T(m, ϵ) = lim
ϵ→0

(x∗1(m, ϵ) + x∗2(m, ϵ)) = x∗1(m, 0+) + K2, (5.8)

where x∗1(m, 0+) is the equilibrium of the reduced model (5.4).

Proposition 5.3. Consider the total equilibrium population (5.8). Then,

dX∗
T

dm
(0, 0+) :=

1
µ

−m1K1 + m2K2

r1
, (5.9)

and
X∗

T(+∞, 0+) :=
m1 + m2

m1
K2. (5.10)

Proof. The equilibrium x∗1(m, 0+) satisfies:

r1x∗1(m, 0+)
[

1 −
(

x∗1(m, 0+)
K1

)µ]
+ m(m2K2 − m1x∗1(m, 0+)) = 0. (5.11)

Dividing (5.11) by r1
Kµ

1
x∗1(m, 0+), we obtain:

x∗1(m, 0+) =


K1

µ + m
m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)




1
µ

. (5.12)

The derivative of (5.12) with respect to m, gives

dx∗1
dm

(m, 0+) =
1
µ


m

d
dm


m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)


 (5.13)

+
m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)




K1

µ + m
m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)




1
µ−1

.

For m = 0, we have x∗1(0, 0+) = K1, therefore, the equation (5.13) gives the derivative (5.9).
For the formula of perfect mixing, dividing (5.11) by m, and taking the limit when m → ∞,

we get:
m2K2 − m1x∗1(+∞, 0+) = 0,

Hence, as x∗2(+∞, 0+) = K2, the sum of x∗1(+∞, 0+) and x∗2(+∞, 0+) gives the formula (5.10).
□

Remark 5.4. We can deduce the formula of perfect mixing X∗
T(+∞, 0+) and the derivative of

the total equilibrium population dX∗
T

dm (0, 0+) by computing the limit of the equations (5.2) and
(5.3) when ϵ goes to zero respectively.
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We consider the regions in the set of the parameters m1 and m2, denoted J0 and J1
defined by:

J0 =

{
(m1, m2) :

m2

m1
>

K1

K2

}
, J1 =

{
(m1, m2) :

m2

m1
<

K1

K2

}
. (5.14)

We have the following result which gives the conditions for which patchiness is beneficial or
detrimental in model (5.1) when ϵ goes to zero.

Theorem 5.5. Let J0 and J1 be the domains defined in (5.14). Consider the total equilibrium
population X∗

T(m, 0+) given by (5.8). Then, we have:

• If (m1, m2) ∈ J0 then X∗
T(m, 0+) > K1 + K2, for all m > 0.

• If (m1, m2) ∈ J1 then X∗
T(m, 0+) < K1 + K2, for all m > 0.

• If m2
m1

= K1
K2

, then x∗1(m, 0+) = K1 and x∗2(m, 0+) = K2 for all m ≥ 0. Therefore
X∗

T(m, 0+) = K1 + K2 for all m ≥ 0.

Proof. First, we try to solve the equation X∗
T(m, 0+) = K1 + K2 with respect to m, to obtain

the intersection points between the curve of the total equilibrium population m 7→ X∗
T(m, 0+)

and the straight line m 7→ K1 + K2. For any m > 0, we have

x∗1(m, 0+) = K1 ⇐⇒

K1

µ + m
m2K2 − m1x∗1(m, 0+)

r1
Kµ

1
x∗1(m, 0+)




1
µ

= K1

⇐⇒m2K2 = m1x∗1(m, 0+)

⇐⇒m2K2 = K1m1 ⇐⇒ dX∗
T

dm
(0, 0+) = 0.

So, if dX∗
T

dm (0, 0+) , 0 then m = 0 and the curve of the total equilibrium population intersects
the straight line m 7→ K1 +K2 in a unique point which is (0, K1 +K2). Therefore, we conclude
that the first and second items of the theorem hold. □

Biologically speaking, according to the result of the previous theorem, the existence of
a faster growing sub-population compared to the second one causes the critical value of
migration rate m0 (see Theorem 4.1) to disappear.

6 Conclusion

The goal of this paper was to generalize to some general growth rates the results obtained
in [2] for a two-patch logistic model. In particular, we considered the model of two patches
with Richards growth rate.

In Section 3, we looked at the case when migration rate goes to infinity. We computed the
equilibrium in this situation (Theorem 3.1) and we proved that the dynamics of the system
(3.6) provide a good approximation of the model (2.1) by using singular perturbation argu-
ments (Theorem 3.3). In Section 4, we have given a complete classification of the conditions
under which dispersal is either beneficial or detrimental to total equilibrium population. The
important result is, even with more general dynamics, the effect of migration is the same as
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with logistic dynamic: either patchiness always has a beneficial effect on the total equilib-
rium population, or this effect is always detrimental, or there exists a critical value m0 of the
migration rate m, such that, the effect is beneficial for m < m0, and detrimental for m < m0
(see Theorem 4.1). In Section 5, we considered the two-patch model (2.1), in the case where
one growth rate is much larger than the last. First, by perturbation arguments, we have given
an approximation of the solutions of the system in this case. Next, we compared the total
equilibrium population with the sum of two carrying capacities.

Some question remains open: how do our results generalize to situations with more than
two patches? If we consider a more general growth dynamic than the growth of Richards
(1.5), this has an effect on the total equilibrium population. I think these questions are
difficult to answer, and require a lot of work and mathematical tools.

Appendix

A Equilibria and stability of (2.1)

In this section, our goal is to prove the global stability of the positive equilibrium of the
system (2.1). In the absence of migration, i.e. the case where m = 0, the system (2.1) admits
(K1, K2) as a non trivial equilibrium point, which furthermore is globally asymptotically
stable (GAS) in the interior of the positive cone R2

+. The problem is whether the equilibrium
continues to be positive and globally stable for any m > 0 or not. We first prove the non
negativity of the solution of System (2.1). We have the following proposition:

Proposition A.1. The positive cone R2
+ is positively invariant for the system (2.1).

Proof. Suppose that, at a given time t, one of the state variables of the system (2.1) is at a
boundary of R2

+, meaning that at least one population is at 0. We suppose first that x1 = 0,
and x2 ≥ 0, then the dynamics of x1 is given by dx1

dt = m21x2 ≥ 0, and, if x2 = 0, and x1 ≥ 0,
then we have dx2

dt = m12x1 ≥ 0. So each trajectory initiated at a boundary of R2
+ either remains

at the boundary or goes to the interior of R2
+. According to [29, Proposition B.7, page 267],

no trajectory comes out of R2
+. Therefore, R2

+ is positively invariant for (2.1). □

The equilibrium of the system (2.1) is the solutions of the following algebraic system:




0 = r1x1

[
1 −

(
x1
K1

)µ]
+ m(m12x2 − m21x1),

0 = r2x2

[
1 −

(
x2
K2

)µ]
+ m(m21x1 − m12x2).

(A.1)

The sum of the two equations of (A.1) shows that the equilibrium points are in a curve noted
Cµ, which its equation is given by:

Φµ(x1, x2) := r1x1

[
1 −

(
x1

K1

)µ]
+ r2x2

[
1 −

(
x2

K2

)µ]
= 0. (A.2)

The curve Cµ passes through the points (0, 0), (K1, 0), (0, K2) and A := (K1, K2) for all value
positive of parameter µ. Note that, it is independent of migration rate m and mij. For the

particular value µ = 1, the curve C1 is an ellipse centered in
(

K1
2 , K2

2

)
( shown in black in

Figure A.1). For µ > 1, the curve Cµ is below the ellipse C1 ( shown in green and brown in the



Effect of dispersal in two-patch environment with Richards growth on population dynamics 59

figure A.1) and for 0 < µ < 1, the curve Cµ is above the ellipse C1 ( shown in red and blue in

Figure A.1). The function Φµ(x1, x2) = Φµ,1(x1) + Φµ,2(x2), with Φµ,i(xi) = rixi

[
1 −

(
xi
Ki

)µ]

is concave since Φµ,1 and Φµ,2 are two concave functions. Another property of the curve Cµ,
if is that if a point (x1, x2) belongs to Cµ with x1 < K1 (resp. x2 > K2) then x2 > K2 (resp.
x1 < K1) (see figure A.1).

Solving the first equation of system (A.1) for x2 yields a curve noted Mm,µ of equation
x2 = φm,µ(x1), where the function φm,µ is given by the following equation:

φm,µ(x1) :=
1

m12

(
m21x1 −

r1

m
x1

[
1 −

(
x1

K1

)µ])
. (A.3)

The curve Mm,µ (shown in the figure A.1 for some values of µ) depends on the migration rate

m and the parameter µ. It always passes through the origin and the point B :=
(

K1, m21
m12

K2

)
.

So, the equilibrium points are the non-negative intersection between the curves Cµ and Mm,µ.
There are two equilibrium points. The first is the trivial point (0, 0) and the second is a non
trivial point noted E∗(m) := (x∗1(m), x∗2(m)) whose position depend on migration rate m (
see Figure A.2).

O x1

A

x2

K1

K2

O x1

x2

B
Mm,µ

Figure A.1: The curves Cµ (left) and Mm,µ (right) for r1 = 3, r2 = 2, K1 = 5, K2 = 4, m12 =
m21 = m = 1 and µ = 0.001 ( green curves ), µ = 0.2 (gold curves ), µ = 1 (black curves ),
µ = 4 ( red curves ) and µ = 7 (blue curves ).

In the following, our aim is to show the global stability of the equilibrium E∗(m). For
this, we need some results. First, for the non-negativity and boundedness of the solution of
the system (2.1), we have the following result:

Lemma A.2. For any non-negative initial condition, the solutions of the system (2.1) remain
bounded, for all t ≥ 0. Moreover, the set

Σ =

{
(x1, x2) ∈ R2

+/x1 + x2 ≤ ξ∗2
ξ∗1

}
,

where ξ∗1 = µ min {r1, r2} and ξ∗2 = µ(r1K1 + r2K2), is positively invariant and is a global
attractor for the system (2.1).
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O x1

x2

K1

K2

B

Figure A.2: Intersection between Cµ and Mm,µ, which are drawn in the same color.

Proof. To show that all solutions are bounded, we consider the quantity defined by XT(t) =
x1(t) + x2(t). So, we have

ẊT(t) = r1x1(t)
[

1 −
(

x1(t)
K1

)µ]
+ r2x2(t)

[
1 −

(
x2(t)

K2

)µ]
. (A.4)

For all ri and Ki, we have the inequality:

rixi

[
1 −

(
xi

Ki

)µ]
≤ µri(Ki − xi), i = 1, 2. (A.5)

Substituting Equation (A.5) into (A.4), we get

ẊT(t) ≤ −ξ∗1 XT(t) + ξ∗2 for all t ≥ 0,

which gives

XT(t) ≤
(

XT(0)−
ξ∗2
ξ∗1

)
e−ξ1t +

ξ∗2
ξ∗1

, for all t ≥ 0. (A.6)

Hence,

XT(t) ≤ max
(

XT(0),
ξ∗2
ξ∗1

)
, for all t ≥ 0.

Therefore, the solutions of System (2.1) are positively bounded and defined for all t ≥ 0.
From (A.6), it can be deduced that the set Σ is positively invariant and it is a global attractor
for the system (2.1). □

We have also the following property:

Lemma A.3. System (2.1) admits no periodic solution.
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Proof. The isoclines of the system (2.1) are given by the two equations:




P1(x1) = − r1
mm12

x1

[
1 −

(
x1
K1

)µ]
+ m21

m12
x1,

P2(x2) = − r2
mm21

x2

[
1 −

(
x2
K2

)µ]
+ m12

m21
x2.

Let fi be the right hand side of the system (2.1). Then, for all m we have:

∂ f1

∂x1
+

∂ f2

∂x2
= r1 + r2 − (µ + 1)

[
r1

(
x1

K1

)µ

+ r2

(
x2

K2

)µ]

− m(m21 + m12) = −m
(

m12
dP1

dx1
+ m21

dP2

dx2

)
< 0.

So, by Dulac’s Criterion [14, Theorem 4.1.1], the system (2.1) admits no periodic solution. □

Theorem A.4. The equilibrium E∗(m) of (2.1) is GAS in the positive cone R2
+ \ {0}.

Proof. The Jacobian matrix of the system (2.1) at E∗(m) is given by:

J(E∗) =
[

κ1 mm12
mm21 κ2

]
,

where κ1 = r1 − (µ + 1)r1

(
x∗1(m)

K1

)µ
− mm21, and κ2 = r2 − (µ + 1)r2

(
x∗2(m)

K2

)µ
− mm12. We

have: 0 < dP1
dx1

(x∗1(m), x∗2(m)) = − 1
mm12

κ1, and 0 < dP2
dx2

(x∗1(m), x∗2(m)) = − 1
mm21

κ2. Therefore,
κ1 < 0 and κ2 < 0. This implies that tr(J(E∗)) = κ1 + κ2 < 0, where tr means the trace.

It’s clear that, in the figures A.3, at the equilibrium E∗, we have: dP1
dx1

(E∗) >
(

dP2
dx2

(E∗)
)−1

,

which gives κ1
−mm12

> −mm21
κ2

. Thus, det J(E∗) = κ1κ2 − m2m12m21 > 0.
Hence by the Routh-Hurwitz criteria for stability, the real parts of the eigenvalues value of
the Jacobian matrix J(E∗) are negative, proving that E∗ is asymptotically stable. Lemmas A.2
and A.3 imply that there cannot be any non-trivial closed paths lying in the interior of the
positive quadrant and hence the asymptotic stability must be global. □

B Two-patch logistic model

We consider the 2-patch logistic equation with asymmetric migrations. We denote by m12 the
migration rate from patch 2 to patch 1, m21 from patch 1 to patch 2, and m is the dispersal
rate between two patches. The model is written:





dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (m12x2 − m21x1) ,

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m (m21x1 − m12x2) .

(B.1)

Note that the system (B.1) is studied in [1, 6, 9, 10, 15] in the case where the migration rates
satisfy m21 = m12, and in [2] for general migration rates. If we denote γ = m12

m21
, then the

system (B.1) becomes:




dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (γx2 − x1) ,

dx2

dt
= r2x2

(
1 − x2

K2

)
+ m (x1 − γx2) ,

(B.2)
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Figure A.3: All possible configurations for the isoclines of the system (2.1) (in red for x1 and
in blue for x2) for certain parameters. The equilibrium points are the intersection between
these two isoclines: the origin and the positive equilibrium E∗(m).

The system (B.2) has always a unique positive equilibrium, still denoted by E∗(m, γ) =
(x∗1(m, γ), x∗2(m, γ)), which is GAS in the interior of positive cone R2 \ {0}. We thus define the
total population abundance at the positive equilibrium under dispersal rate m and dispersal
asymmetry γ by

X∗
T(m, γ) = x∗1(m, γ) + x∗2(m, γ),

as the total realized asymptotic population abundance.

B.1 Total population size for fixed γ

In all of this part, we assume that γ is positive and fixed parameter and m varies in [0, ∞[.
We recall that the derivative of X∗

T(m, γ) with respect to m at m = 0 is given by the following
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formula [8]:
dX∗

T
dm

(0, γ) = (γK2 − K1)

(
1
r1

− 1
r2

)
. (B.3)

The behavior of the model (B.2) for perfect mixing (i.e. m → ∞) is given by the following
formula [2, 8]:

X∗
T(∞, γ) = (1 + γ)

γr1 + r2

γ2α1 + α2
, where αi = ri/Ki. (B.4)

We consider the regions in the set of the parameter γ denoted J0, J1 and J2, defined by:





If r2 > r1 then





J1 =
{

γ : γ > α2
α1

}
,

J0 =
{

γ : α2
α1

≥ γ > K1
K2

}
,

J2 =
{

γ : K1
K2

> γ
}

.

If r2 < r1 then





J1 =
{

γ : γ < α2
α1

}
,

J0 =
{

γ : α2
α1

≤ γ < K1
K2

}
,

J2 =
{

γ : K1
K2

< γ
}

.

(B.5)

We recall the following result of Arditi et al. [2] which gives the conditions for which
patchiness is beneficial or detrimental in model (B.2).

Proposition B.1. The total equilibrium population X∗
T of (B.2) for γ fixed satisfies the follow-

ing properties

1. If r1 = r2 then X∗
T(m, γ) ≤ K1 + K2 for all m ≥ 0.

2. If r2 , r1, let J0, J1 and J2, be defined by (B.5). Then we have:

• if γ ∈ J0 then X∗
T(m, γ) > K1 + K2 for all m > 0

• if γ ∈ J1 then X∗
T(m, γ) > K1 + K2 for 0 < m < m0 and X∗

T(m, γ) < K1 + K2 for
m > m0, where

m0 =
r2 − r1
γ
α2
− 1

α1

1
α1 + α2

.

• if γ ∈ J2 then X∗
T(m, γ) < K1 + K2 for any m > 0

• If γ = K1
K2

, then x∗1(m, γ) = K1 and x∗2(m, γ) = K2 for all m ≥ 0. Therefore
X∗

T(m, γ) = K1 + K2 for all m ≥ 0.

B.2 Total population size for fixed m

In all of this section, we assume that m is fixed parameter and γ varies from 0 to ∞.

B.2.1 The model when γ → 0

We have the following result
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Proposition B.2. Consider the system (B.2). Then,

lim
γ→0

E∗(m, γ) =





(0, K2), i f m ≥ r1,((
1 − m

r1

)
K1, 1

2 K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1

)
, i f m < r1.

(B.6)

Proof. Denote E∗(m, 0+) = (x∗1(m, 0+), x∗2(m, 0+)) := limγ→0 E∗(m, γ). When γ → 0, the
equilibrium equations of (B.2) take the following form:





0 = r1x∗1(m, 0+)
(

1 − x∗1(m, 0+)
K1

)
− mx∗1(m, 0+),

0 = r2x∗2(m, 0+)
(

1 − x∗2(m, 0+)
K2

)
+ mx∗1(m, 0+),

(B.7)

which implies {
0 = (r1 − m)x∗1(m, 0+)− α1(x∗1(m, 0+))2 = 0,
−α1(x∗2(m, 0+))2 + mx∗1(m, 0+) + r2x∗2(m, 0+) = 0.

(B.8)

If m ≥ r1, then the system (B.8) admits (0, 0) and (0, K2) as solutions. Since (0, 0) is unstable
for (B.2), then E∗(m, γ) → (0, K2) as γ → 0.

If m < r1, the first equation in (B.8) gives x∗1(m, 0+) = 0 or x∗1(m, 0+) = r1−m
α1

. If we replace
x∗1(m, 0+) = 0 in the second equation of (B.8) we get x∗2(m, 0+) = 0 or x∗2(m, 0+) = K2, and if
we replace x∗1(m, 0+) = r1−m

α1
in the second equation of (B.8) we obtain the following equation:

−α2(x∗2(m, 0+))2 + r2x∗2(m, 0+) +
m (r1 − m)

α1
= 0, (B.9)

which admits as positive solution

x∗2(m, 0+) =
1
2

K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1.

Therefore, if r1 > m, then the system (B.8) admits three solutions: (0, 0), (0, K2) and

E∗(m, 0+) :=

((
1 − m

r1

)
K1,

1
2

K2 +
1

2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1

)
, (B.10)

Since, (0, 0), and (0, K2) are unstable, so E∗(m, λ) converge to E∗(m, 0+) as γ → 0. □

As a corollary of the previous proposition, we obtain the following result which describes
the total equilibrium population X∗

T(m, γ) when γ → 0.

Corollary B.3. we have:

lim
γ→0

X∗
T(m, γ) := X∗

T(m, 0+) =





K2, i f m ≥ r1,
(

1 − m
r1

)
K1 +

1
2 K2 +

1
2α2

√
r2

2 + 4mα2

(
1 − m

r1

)
K1, i f m < r1.

(B.11)
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B.2.2 The model when γ → ∞

In the next theorem, we give the behavior of the model (B.2) when γ → ∞.

Proposition B.4. Let (x1(t, γ), x2(t, γ)) be the solution of the system (B.2) with initial condi-
tion (x0

1, x0
2) satisfying x0

i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation

dX
dt

= r1X
(

1 − X
K1

)
, (B.12)

with initial condition z(0) = x0
1 + x0

1. Then, when γ → ∞, we have

x1(t, γ) + x2(t, γ) = z(t) + oγ(1), uniformly for t ∈ [0,+∞) (B.13)

and, for any t0 > 0, we have
{

x1(t, γ) = z(t) + oγ(1),
x2(t, γ) = oγ(1),

uniformly for t ∈ [t0,+∞). (B.14)

Proof. Let X = x1 + x2. We rewrite the system (B.2) using the variables (X, x1), and get:




dx1

dt
= r1x1

(
1 − x1

K1

)
+ m (γ(X − x1)− x1) ,

dX
dt

= r1x1

(
1 − x1

K1

)
+ r2(X − x1)

(
1 − (X − x1)

K2

)
.

(B.15)

When γ → ∞, (B.15) is a slow-fast system, with one slow variable, X, and one fast variable
x1. As suggested by Tikhonov’s Theorem [17, 30, 34] we consider the dynamics of the fast
variable in the time scale τ = γt. One obtains

dx1

dτ
= m(X − x1). (B.16)

The slow manifold, which is the equilibrium point of the fast dynamics (B.16), is given by
x1 = X. As this manifold is GAS for the system (B.16), the Theorem of Tikhonov ensures that
after a fast transition toward the slow manifold, the solutions of (B.15) are approximated by
the solutions of the reduced model which is obtained by replacing x1 = X into the dynamics
of the slow variable, which gives (B.12).

Since (B.12) admits X = K1 as a positive equilibrium point, which is GAS in the positive
axis, the approximation given by Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable
and for all t ≥ t0 > 0 for the fast variable, where t0 is small as we want. Therefore, let z(t) be
the solution of the reduced model (B.12) of initial condition z(0) = X(0, γ) = x0

1 + x0
2, then,

when m → ∞, we have the approximations (B.13) and (B.14). □

According to previous proposition, when γ → ∞, the equilibrium E∗(m, γ) converge to
(K1, 0) and X∗

T(m,+∞) = K1.
For more details on the effects of dispersal intensity and dispersal asymmetry on the total

population abundance, the reader may refer to the recent work of Gao et al. [11].
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Abstract. This paper investigates the modified projective synchronization (MPS) be-
tween two hyperchaotic memristor-based Chua circuits modeled by two nonlinear
integer-order and fractional-order systems. First, a hyperchaotic memristor-based Chua
circuit is suggested, and its dynamics are explored using different tools, including sta-
bility theory, phase portraits, Lyapunov exponents, and bifurcation diagrams. Another
interesting property of this circuit was the coexistence of attractors and the appearance
of mixed-mode oscillations. It has been shown that one can achieve MPS with integer-
order and incommensurate fractional order memristor-based Chua circuits. Finally,
examples of numerical simulation are presented, showing that the theoretical results
are in good agreement with the numerical ones.
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1 Introduction

In 1971, the circuit theorist Leon Chua had published a study entitled "Memristor: the missing
circuit element". This achievement has attracted a great research attention across a wide range
of disciplines, such as programmable logic [14] and electronics [33] as well as neural net-
works [42]. Because memristors are non-linear components, their application to build chaotic
or hyperchaotic systems has received significant attention in recent decades [9,23,30]. For ex-
ample, the canonical Chua’s circuit has been improved by replacing its diode with a memristor
whose output is monotone-increasing [8]. Both chaotic and hyperchaotic systems are clearly
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defined as nonlinear systems that are highly dependent on initial conditions, unpredictable in
the long run and non-periodic. The fact that hyper-chaotic systems have at least two positive
Lyapunov exponents makes their dynamics more complex. And hence favourable for many
applications. Mainly, for encryption and secure communications [12, 17, 35, 36]. Various mod-
els of commensurate fractional-order memristor-based systems have been designed [11,13,21].
However, because of the different fractional-order characteristics of each circuit component, it
is more important to consider fractional-order circuits or systems with incommensurate frac-
tional order. Meanwhile, synchronization of chaotic and hyperchaotic systems has become
a crucial research domain, especially in secure communication [19]. Various techniques have
been proposed for the synchronization of chaotic systems, such as Active control [31], adaptive
control [4, 35], Feedback control, Prediction based feedback control, Sliding mode control and
adaptive fuzzy control [2,5,6,10,31,34,38]. Using these methods, many works for the synchro-
nization problem have been extended to the scope, such as phase synchronization, complete
synchronization, anti-synchronization, projective synchronization, generalized projective syn-
chronization, inverse hybrid function projective synchronization, generalized synchronization
and MPS [4, 18, 29, 31, 41, 43], but there are few studies on the MPS between integer-order and
incommensurate fractional order hyperchaotic systems.
Motivated by the precedent reasons, a hyperchaotic memristor-based Chua’s circuit is sug-
gested, and its dynamics are explored using different tools, including stability theory, phase
portraits, Lyapunov exponents, and bifurcation diagrams. Then, using an active control strat-
egy, the problem of MPS between integer-order and incommensurate fractional order hyper-
chaotic memristor-based systems is explored, and synchronization is proved using the Lya-
punov stability theory of fractional systems.
The present paper is organized as follows: in section 2, a mathematical model of the memristor
is described, and the Caputo fractional derivative is discussed. In section 3, a novel memristor-
based hyperchaotic system is introduced and its dynamical behavior is investigated. MPS
between integer-order and incommensurate fractional order hyperchaotic systems is applied
using the active control method in section 4. To illustrate the theoretical results, numerical
simulations are presented using MATLAB programs. Finally, in the last section, this study
concludes with a summary of the accomplished results and a conclusion.

2 Preliminaries

2.1 Basic memristor model

A memristor is a nonlinear resistor with a memory effect that can be either flux-controlled or
charge-controlled [8]. It can be defined as a dual-terminal device having the relationship

f (φ, q) = 0.

Equations (2.1) and (2.2) describe a charge-controlled and a flux-controlled memristor, respec-
tively [20, 26]

M(q) =
dφ(q)

dq
, v = M(q)i, (2.1)

W(φ) =
dq(φ)

dφ
, i = W(φ)v, (2.2)
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Figure 2.1: Modified memristor-based Chua’s circuit

Where φ denotes the magnetic flux and q the charge, W(φ) and M(q) are called the memduc-
tance and memristance respectively.
This study considers a flux-controlled memristor whose characteristics are described by a
piecewise quadratic function q(φ) given by

q(φ) = −aφ + 0.5bφ|φ|.

With a and b being positive parameters.
Hence, its memductance function is

W(φ) =
dq(φ)

dφ
= −a + b|φ|.

2.2 Caputo fractional derivative

Definition 2.1. The Caputo fractional derivative of order α of a continuous function f :
R+ 7→ R is defined by:

Dα
t f (t) =





1
Γ(m−α)

∫ t
0

f (m)(τ)
(t−τ)α−m+1 dτ, m − 1 < α < m,

dm

dtm f (t), α = m,

where m = ⌈α⌉, and Γ is the Γ-function defined by

Γ(z) =
∫ +∞

0
e−ttz−1dt, Γ(z + 1) = zΓ(z).

Theorem 2.2. Consider the incommensurate fractional order system

Dαi xi = f (x1, x2, ..., xn, t), i = 1, 2, ..., n, (2.3)

Where α1 , α2 , ... , αn. Suppose that m is the least common multiple of the denominators ui’s
of αi’s, where αi =

vi
ui

, ui, vi ∈ Z+ for i = 1, 2, ..., n. Denote γ = 1
m and J be the Jacobian matrix

J = d f
dx evaluated at the equilibrium, where f = [ f1, f2, ..., fn]T, x = [x1, x2, ..., xn]T. System (2.3) is

asymptotically stable if |arg(λi)| > γ π
2 is satisfied for all roots λi of the following equation :

det(diag([λmα1 , λmα2 , ..., λmαn ])− J) = 0, (2.4)
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3 Building a memristor-based system and its analysis

In this section, an alternative memristor-based Chua’s circuit is proposed by replacing the non-
linear diode in the original circuit with a negative conductance and a passive flux-controlled
memristor described by (2.2) in parallel and changing the inductance’s position that becomes
between the two capacitances as shown in Figure 2.1.
Kirchhoff Laws allow us to describe the suggested circuit theoretically by the following four-
dimensional differential system





dV1(t)
dt

=
1

C1
[IL(t) + GV1(t)− W (ϕ)V1(t)] ,

dV2(t)
dt

=
1

C2

[
V2(t)

R
− IL(t)

]
,

dIL(t)
dt

=
1
L
[−V1(t) + V2(t)− RL IL(t)] ,

dϕ(t)
dt

= V1(t),

(3.1)

where W(ϕ) is defined by (2.2) and Vi, i = 1.2 voltages, R, RL and G resistances, Ci, i = 1.2
capacitances, IL current, L the inductance and ϕ the magnetic flux through the memristor.

By setting x = V1, y = V2, z = IL, ω = ϕ, C2 = 1, R = 1, α =
1

C1
, β =

1
L

, γ =
RL

L
and ξ = G

then (3.1) can be converted into its dimensionless form





ẋ = α[z + ξx − (−a + b|ω|)x],

ẏ = y − z,

ż = −β(x − y)− γz,

ẇ = x,

(3.2)

where x, y, z and ω are the states and α, β, γ, ξ, a and b are assumed to be positive constant
parameters.

3.1 Stability analysis

The equilibrium points of system (3.2) are its solutions, taking each equation of the system
equal to zero. Thus, the following equilibrium points are obtained

Pe = {(x, y, z, ω); x = 0, y = 0, z = 0 and ω = ωe ∈ R} . (3.3)

Hence, each point on the ω − axis is an equilibrium point of (3.2), and (3.3) is called the
equilibrium set.
The Jacobian matrix at each equilibrium point Pe is

J(Pe) =




α(ξ − W(we)) 0 α 0

0 1 −1 0

−β β −γ 0

1 0 0 0




(3.4)
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The characteristic polynomial of the system (3.2) is given by

P(λ) = λ
[
λ3 + [γ − 1 − α(ξ − W(we))]λ2 + [(−γ + 1)α(ξ − W(we)) + (1 + α)β − γ]λ

+α[(γ − β)(ξ − W(we))− β]] = λQ(λ). (3.5)

Setting the system parameters as

α = 5, β = 5, γ = 0.11, ξ = 3, a = 1.5, b = 1 and W(ωe) = −a + b|ωe|. (3.6)

Then, the characteristic polynomial (3.5) becomes

P(λ) = λQ(λ)

= λ
[
λ3 + (5 |we| − 23.4) λ2 + (50.15 − 4.5 |we|) λ + 24.5 |we| − 135.25

]
= 0. (3.7)

In order to find the range ωe for which the system (3.2) has a three-dimensional stable
manifold (Regardless of the eigenvalue being zero), one applies Routh-Hurwitz stability cri-
terion to Q(λ). So, all its roots have negative real parts if and only if the following conditions
are satisfied 




5 |we| − 23.4 > 0,

24.5 |we| − 135.25 > 0,

−22.5 |we|2 + 331.55 |we| − 1038.3 > 0,

(3.8)

Hence,
5.5204 < |we| < 10.221,

In contrast, chaos has a greater possibility of occurrence if (3.7) has one or more roots with
positive real parts, that is

|we| < 5.5204, or |we| > 10.221. (3.9)

According to the above results, we deduce that the initial value of the state variable ω(t)
can affect considerably the dynamical behavior of the system (3.2).

3.2 Bifurcation and Lyapunov Exponents spectrum

3.2.1 Dynamical behaviors versus the parameter a

In this section, the parameters take the following values α = 5, β = 5, γ = 0.1, b = 1, ξ = 3
and let a vary over a certain interval to discuss the complex dynamics of the system (3.2)
with the initial condition (x, y, z, w0) = (−0.5, 0.1, 0.01,−1). The bifurcation diagram of y and
the corresponding Lyapunov exponents spectrum for a varying from 0 to 6 with a step size
h = 0.001 are obtained as depicted in Figure 3.1 and Figure 3.2, respectively, which are in
good coincidence.

From these figures it is obvious that system (3.2) displays period 1 orbit for a ∈]0.02, 1.41[∪]2.04, 3.24[.
For a ∈]1.41, 2.1[∪]3.24, 6[ system (3.2) demonstrates chaotic and hyperchaotic behavior.

In particular, for a = 3 the Lyapunov exponents are

L1 ≈ 0.1417, L2 ≈ 0.0942, L3 ≈ 0.042, L4 ≈ −52.2119. (3.10)
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Figure 3.1: Bifurcation diagram with respect to the parameter a for w0 = −1
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Since L1 + L2 + L3 + L4 = −51.9719 < 0, L1 > 0, L2 > 0, then the system (3.2) is hyper-
chaotic. The Kaplan-Yorke dimension of its attractor is

DKY ≈ 3 +
L1 + L2 + L3

|L4|
= 3 +

0.1417 + 0.0942 + 0.042
51.2119

= 3.0046, (3.11)

which is a fractal dimension.

3.2.2 Dynamical behaviors versus the initial state w0

In the aim to study the impact of initial condition values on the dynamical behavior of the
system (3.2), for the set of parameter values (7), different diagrams are presented to identify
chaos.
Considering the initial condition (x, y, z, w0) = (−0.5, 0.1, 0.01, w0), the Lyapunov exponents
spectrum and the corresponding bifurcation diagram of y, for w0 varying from −15 to 15
with step 0.01 are obtained as shown in Figure 3.4 and Figure 3.5, respectively. From these
diagrams, one observes that when the value of initial state w0 belongs to the following four
intervals: [−15,−11.91], [−5.52,−0.9] , [0.9, 5.52] , [11.91, 15], then system (3.2) exhibits chaos.
Furthermore, the two diagrams indicate symmetry versus w0 = 0.

Particularly, for w0 = −1 the Lyapunov exponents are [7]

L1 = 0.1485, L2 = 0.0420, L3 = −0.0154, L4 = −31.7725. (3.12)

Since L1 + L2 + L3 + L4 = −31.5975 < 0, L1 > 0, L2 > 0, then the system (3.2) is hyper-
chaotic. The Kaplan-Yorke dimension of its attractor is

DKY = 3 +
L1 + L2 + L3

|L4|
= 3 +

0.1485 + 0.0420 − 0.0154
31.7725

= 3.0055, (3.13)

which is a fractal dimension.
Some phase portraits are depicted in Figure 3.3 for different values of the initial condition
w0. In particular, a period-1 orbits are shown in 3.3(b), 3.3(e), and 3.3(h). Moreover, 3.3(c),
3.3(g) represents a stable equilibrium point, and 3.3(a), 3.3(d), 3.3(f) and 3.3(i) displays chaotic
attractors.



76 N. Boudjerida, M-S. Abdelouahab and R. Lozi

-100
40

-50

20 200

0z

 (a)!
0
=-13

100

50

y

0

x

100

0
-20 -100

-40 -200 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

y

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

z

 (b)!
0
=-10.22

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

y #10-17

-6

-4

-2

0

2

4

6

z

#10-17  (c)!
0
=-7.52

-100
40

-50

0

20 200

z

50

 (d)!
0
=-3

100

y

100

0

x

150

0
-20 -100

-40 -200 -25 -20 -15 -10 -5 0 5 10 15 20 25

y

-60

-40

-20

0

20

40

60

z

 (e)!
0
=0.6

-150
50

-100

-50

200

0z

50

 (f)!
0
=4

100

y

0

100

x

150

0
-100

-50 -200

Figure 3.3: Some attractors for different values of initial condition w0 : (a) w0 = −13, (b)
w0 = −10.22, (c) w0 = −7.52, (d) w0 = −3, (e) w0 = 0.6, (f) w0 = 4, (g)

4 Modified projective synchronization between integer-order and
incommensurate fractional order hyperchaotic systems

This section presents a theoretical analysis of the modified projective synchronization between
integer-order and incommensurate fractional order hyperchaotic systems by applying the ac-
tive control method based on the stability theorem of fractional-order linear systems.

4.1 Theoretical analysis

Giving two hyperchaotic systems: master and slave described respectively by :

Ẋ = F(X), (4.1)

DαY = G(Y), (4.2)

in order to make the study easier, (4.2) is rewritten as:

DαY = AY + g(Y) + U, (4.3)

where X(t) = (x1, x2, ..., xn), Y(t) = (y1, y2, ..., yn) are states of the master and the slave
systems, respectively, α = (α1, α2, ..., αn) where 0 < αi < 1 is the fractional-order,
A ∈ Rn×n, g are the linear part and the nonlinear part of the system (4.3), respectively, and
U = (u1, u2, ..., un) is a control input vector.
The error state is defined as:
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Figure 3.4: Bifurcation diagram with respect to the fourth coordinate w0 of initial condition
for b = 1
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e(t) = CY − X. (4.4)

Where C = diag(c1, c2, ..., cn) denotes a scaling matrix. The objective of our work is to
achieve synchronization between the two hyperchaotic systems (4.1) and (4.2) which could be
achieved using the MPS technique when:

lim
t→+∞

e(t) = lim
t→+∞

∥CY(t)− X(t)∥= 0. (4.5)

Hence the error system from equations (4.1) and (4.3) is as follows:

Dαe = CDαY − DαX, (4.6)

= CAY + Cg(Y) + CU − DαX. (4.7)

In order to realize the MPS between integer order and incommensurate fractional order
hyperchaotic systems, an active control U is chosen whereas the error system (4.4) asymp-
totically converges to zero. To achieve the stability of the system, we take the active control
U = (u1, u2, ..., un)T, such that:

U = C−1((A + M)e − CAY − Cg(Y) + DαX), (4.8)

where M ∈ Rn×n is a gain matrix to be determined.
Substituting (4.8) into (4.7)yields :

Dαe = (A + M)e. (4.9)

Proposition 4.1. If the matrix M is selected such that all roots λi of the characteristic equation:

det(diag([λmα1 , λmα2 , ..., λmαn ])− (A + M)) = 0,

satisfy |arg(λi)| > π
2m , i = 1, 2, ..., n, where m is the least common multiple of the denominators of αi,

then the master system (4.1) and slave system (4.3) can be synchronized under the controller (4.8).

Proof. Immediately, using theorem 2.2. □

4.2 Numerical example and simulation results

To confirm the theoretical results obtained in the above sections, we perform numerical simu-
lation by adopting the novel hyperchaotic system as a master system and its incommensurate
fractional order version as a slave system.
The master system is defined as





ẋ1 = α[x3 + ξx1 − (−a + b|ω|)x1],

ẋ2 = x2 − x3,

ẋ3 = −β(x1 − x2)− γx3,

ẋ4 = x1,

(4.10)



MPS of fractional-order hyperchaotic memristor-based Chua’s circuit 79

The slave system is expressed by





Dα1 y1 = α[y3 + ξy1 − (−a + b|ω|)y1] + u1,

Dα2 y2 = y2 − y3 + u2,

Dα3 y3 = −β(y1 − y2)− γy3 + u3,

Dα4 y4 = y1 + u4,

(4.11)

where u1, u2, ..., u4 are the active control functions, and α is a rational number between 0
and 1. The linear part of the system (4.3) is given by

A =




α(a + ξ) 0 α 0

0 1 −1 0

−β β −γ 0

1 0 0 0




(4.12)

The matrix C is picked out in agreement with the MPS control technique proposed in
equation (4.4) then

C = diag(5, 10, 0.1, 12), (4.13)

and the gain matrix M is chosen as

M =




−αξ − 2αa 0 1 − α 0

0 −2 1 0

β −β −γ 0

−1 0 0 −1




(4.14)

With the values given in (4.8) and (4.14), the error system becomes




Dα1 e1

Dα2 e2

Dα3 e3

Dα4 e4




=




−αa 0 1 0

0 −1 1 0.11

0 0 −γ 0

−1.5 0 0 −1







e1

e2

e3

e4




(4.15)

and the characteristic equation:

det(diag([λmα1 , λmα2 , λmα3 , λmα4 ])− (A + M)) = 0, (4.16)

it can be transformed to:

(λmα1 + 7.5)(λmα2 + 1)(λmα3 + 0.11)(λmα4 + 1) = 0, (4.17)

Where m is the least common multiple of the denominators of αi, for i = 1, 2, 3 and 4, the
master system (4.10) and the slave system (4.11) are synchronized if all roots λ of (4.17) satisfy
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Figure 4.1: Some chaotic attractors of novel incommensurate fractional order system (4.11)

|arg(λi)| > π
2m .

Let us take (α, β, ξ, a, γ) = (5, 5, 3, 1.5, 0.11) and (α1, α2, α3, α4) = (0.95, 1, 1, 1), substituting
in (4.17) yields:

(λ19 + 7.5)(λ20 + 1)(λ20 + 0.11)(λ20 + 1) = 0, (4.18)

Obviously, all roots λi of (4.18) must satisfy the condition |arg(λi)| > π
40 , consequently the

master system (4.10) and the slave system (4.11) are synchronized, under the controller (4.8).

Finally, for numerical simulation, the Adams method [16] is used to solve the systems with
time step size h = 0.02, the error system has the initial values:

e1(0) = 0.1, e2(0) = 0.2, e3(0) = 0.1, e4(0) = −1.

The parameter values of the hyperchaotic systems are taken as in the hyperchaotic case
(??) and the different fractional-orders are taken as:

(α1, α2, α3, α4) = (0.95, 1, 1, 1).

Figure 4.1 illustrates the attractors of the novel incommensurate fractional order system
(4.11).
Figure 4.2 illustrates the synchronization errors between integer-order and incommensurate
fractional order systems.
Figure 4.3 illustrates the error functions evolution (4.15).
From Figure 4.3, for the given parameters, numerical results clearly show that errors converge
to zero, and so the MPS is effectively implemented under the controller (4.8).
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Figure 4.2: Synchronization errors between integer order and incommensurate fractional order
systems

5 Conclusion

The synchronization between integer-order and fractional-order versions of a new memristor-
based circuit with hyperchaotic dynamics was examined in this study. In order to derive the
dynamical analysis, the stability theorems for fractional-order systems were applied, and the
findings show that the variation of the fractional-order derivative significantly affects the pro-
posed model’s dynamical behavior. An MPS controller for synchronizing two hyperchaotic
systems with integer and incommensurate fractional orders has been developed. Some nu-
merical simulations have been provided to illustrate the theoretical results. We will use the
proposed memristor-based hyperchaotic circuit for secure communication in the future by
modulating the original signals into the chaotic sequences generated by the master circuit
and transferring the combined signals to the receiver over a communication channel. Signals
are received, and the MPS controller decodes them using the slave memristor-based circuit.
Therefore, the relevant research is still in its early stages, and our next articles will discuss
circuit implementations.
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