Forecasting Sales Using Genetic Algorithms La prévision des ventes en utilisant les Algorithmes Génétiques

Main Article Content

Omar MOUFFOK
Youcef SOUAR

Abstract

Les Algorithmes Génétiques est une technique d’intelligence artificielle que peut être utilisé
comme méthode quantitative dans plusieurs domaines. Les prévisions des comportements des
phénomènes s’effectuent habituellement par la méthodologie de Box-Jenkins en analysant les
séries temporelles, le but de cette étude est de faire une combinaison entre ces méthodes et
l’appliquer sur une série temporelle des ventes mensuelles d’un fabriquant de plastique. Les
résultats obtenues ont montré que les Algorithmes Génétiques est une méthode efficace pour la
prévision des ventes, ainsi qu’elle a plusieurs avantages concernant les caractéristiques et
l’application.

Article Details

How to Cite
MOUFFOK, O., & SOUAR, Y. (2019). Forecasting Sales Using Genetic Algorithms La prévision des ventes en utilisant les Algorithmes Génétiques. Finance and Business Economies Review, 3(2). Retrieved from https://jiamcs.centre-univ-mila.dz/index.php/fber/article/view/385
Section
Articles

References

Adeli, H., Sarma, K.C. (2006). Cost Optimization of Structures Fuzzy Logic, Genetic

Algorithms and Parallel Computing, John Wiley & Sons, England.

Akaike H. (1973). Information Theory and an Extension of the Maximum Likelihood

Principle, in B.N. Petrov and F. Csaki, eds, 2nd international symposium on information theory,

Akademia Kiado, Budapest.

Alander, J.T. (2012). An Indexed Bibliography of Genetic Algorithms in Economics,

Report Series No. 94-1-ECO, Finland.

Bourbonnais R. (2011). Econométrie : Manuel et exercices corrigés, Dunod, Paris.

Box G., Jenkins G. (1976).Time Series Analysis Forecasting and Control, Holden-day,

Oakland, California.

Coley, D.A. (1999). An Introduction to Genetic Algorithms for Scientists and Engineers,

World Scientific, USA.

Dickey D., Fuller W. (1979). Distribution of the Estimators for Autoregressive Time

Series with Unit Root, Journal of American statistical association, vol 74, N°366.

Dickey D., Fuller W. (1981). Likelihood Ratio Statistics Estimators for Autoregressive

Time Series with Unit Root, Econometrica, vol 49, N°4.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley Publishing Company, USA.

Goldberg, D.E. (1981). Robust Learning and Decision Algorithms for Pipeline Operations.

Unpublished dissertation proposal, University of Michigan, Ann Arbor.

Greene W., Econometric Analysis, seventh edition, Pearson. 2012.

Haupt, R.L., Haupt, S.E. (2006). Practical Genetic Algorithms, 2nd edition, John Wiley &

Sons, USA.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan

Press.

Holland, J.H. (1992).Genetic Algorithms, Scientific American, p. 66-72.

Jong, K.D. (1980). Adaptive System Design: A Genetic Approach, IEEE Transactions on

Systems, Man and Cybernetics 10, p 556–574.

Palisade Corporation (2010). Guide to Using Evolver the Genetic Algorithm Solver for

Microsoft Excel Version 5.5, January.

Phillips P., Perron P. (1988). Testing for Unit Root in Time Series Regression, Biometrika,

vol 75.

Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms, 2nd

edition, Springer, Netherlands.

Sivanandam, S.N., Deepa, S.N. (2008). Introduction to Genetic Algorithms, Springer, USA.

Schwartz G. (1978). Estimating the Dimension of a Model, The annals of statistics, vol 6.

Tsay R. (2002).Analysis of Financial Time Series, John Wiley & Sons, Canada.

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.