The Mio-pliocene aquifer system of the South Auresian Trough, Low Septentrional Sahara, Algeria: aquifer geometry and groundwater characterization
Main Article Content
Abstract
In the South auresian trough, Low Septentrional Sahara, Algeria, the sands aquifer is contained in the Mio-pliocene deposits in which several sedimentary sets have identified and contain two independent aquifer levels. Their relationship is determined by data correlation of several cross-sections surveyed on outcrops and boreholes that permit us a 2D construction of the multi-layer aquifer formations and to specify its geometry. The latter shows an asymmetrical synclinal structure with greater depth to the south and an unconformity of the upper unit (upper aquifer) on the base unit (lower aquifer) with a reduction in thickness from south to north. The upper aquifer, commonly designated “undifferentiated Mio-pliocene aquifer” is the most exploited. Its water is moderate to strongly charged and presents two families at evolutional hydrochemical facies. Their spatial distribution is strongly influenced by the natural context and the aquifer geometry. The hydrochemical analysis reveals that the dissolution of carbonate (CaCO3 or CaMgCO3), sulfate (CaSO4) and salt (NaCl) were the major sources of ions in the studied groundwaters. In this region deprived of treatment means and softening of water, the exploitation of the study results can help the decision makers, preferentially, to choose the captive fields principally destined for potable water supply in sectors containing the water less charged.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Allia Z. 2018. Le Système Aquifère Mio-Pliocène Du Bassin de Chott Melrhir-Zab Chergui: Caractérisation, Géométrie et Hydrochimie. Thèse en Sci., Université Mohamed Khider–Biskra, Biskra, Algeria.
Allia Z., Chebbah M. Ouamane A. 2018. Analyse et évaluation de la qualité des eaux du système aquifère Mio-pliocène dans le Zab Chergui, Bas Sahara Septentrional. Courrier du Savoir, 26 : 235-244.
Allia Z., Lalaoui M. & Chebbah M., 2022. Hydrochemical assessment for the suitability of drinking and irrigation use of surface water in Grouz Dam Basin, Northeast Algeria. Sustain. Water Resour. Manag. 8(88). https://doi.org/10.1007/s40899-022-00663-8
ANRH, 2011. Etude sur modèle mathématique du système aquifère de la région du Biskra.
APHA, 1985. (American Public Health Association) Standard methods for the examination of water and wastewater. In: Greenberg AE (APHA), Trussell RR (AWWA), Clesceri LS (WPCF) (eds). APHA, Washington, DC.
Chebbah M. & Allia Z. 2014. Geochemistry and hydrogeochemical process of groundwater in arid region: a case study of the water table in the Souf Valley (Low Septentrional Sahara, Algeria). African Journal of Geo-Science Research, 2014,2(3): 23-30.
Chebbah M. & Allia Z. 2015. Geochemistry and hydrogeochemical process of groundwater in the Souf valley of Low Septentrional Sahara, Algeria. African Journal of Environmental Science and Technology 9(3): 261-273. https://doi.org/10.5897/AJEST2014.1710
Chebbah M. 2007. Lithostratigraphie, sédimentologie et modèles de bassins des dépots néogènes de la région de Biskra, de part et d'autre de de l'accident sud atlasique (Zibans, Algerie). Thèse Doctorat d’Etat, Univ. Constantine 1. 412p. http://depot.umc.edu.dz/handle/123456789/7403
Chebbah M. Lamouroux C. 2012. La Fosse Sud Aurésienne au Néogène (Domaine pré-saharien, Algérie): séquences de dépôt, propositions de corrélations et évolution sédimentaire. Bulletin du Service Géologique de l’Algérie, 23(3), 219-239. https://www.asjp.cerist.dz/en/article/948
Chebbah M. Marmi R. & Lamouroux C. 2008. Sédimentologie des faciès et paléogéographie du bassin d’El Outaya au Néogène (Atlas saharien, Algérie. Géologique de l’Algérie, 19(3), 235-244. https://www.asjp.cerist.dz/en/article/1990
Chebbah, M. 2016. A Miocene-restricted platform of the Zibane zone (Saharan Atlas, Algeria), depositional sequences and paleogeographic reconstruction. Arab J Geosci 9 (151). https://doi.org/10.1007/s12517-015-2132-9
D.H.W de Biskra., Rapports internes, 1992 -2002
Lalaoui M. & Allia Z., Chebbah M. 2020. Hydrogeochemical processes and suitability assessment of surface water in the Grouz Dam Bassin, Northeast Algeria. Journal of Fundamental and Applied Sciences, 12 (3): 1452–1474.
Michard G., 1989. Equilibres chimiques dans les eaux naturelles. Ed.Published.
Modibo Sidibé, A.; Lin, X.; Koné, S. 2019. Assessing Groundwater Mineralization Process, Quality, and Isotopic Recharge Origin in the Sahel Region in Africa. Water 11(789). https://doi.org/10.3390/w11040789
Mohamed A., Asmoay A., Alshehri F. et al. 2022. Hydro-Geochemical Applications and Multivariate Analysis to Assess the Water–Rock Interaction in Arid Environments. Applied Sciences. 12(13): 6340. https://doi.org/10.3390/app12136340
Nesson C., 1975. L’évolution des ressources hydrauliques dans les oasis du Bas Sahara Algérien. Mem.Doc, 17.
Piper A.M., 1944. A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union, Tranc. 914-923.
Refat Nasher N.M. & Humayan Ahmed M., 2021. Groundwater geochemistry and hydrogeochemical processes in the Lower Ganges-Brahmaputra-Meghna River Basin areas, Bangladesh. Journal of Asian Earth Sciences: X. 6. https://doi.org/10.1016/j.jaesx.2021.100062
Rodier J., 1996. Analyse des eaux naturelles, eaux résiduaires, eaux de mer. 8éme édition Dunod, Paris, 1384p.
William S. Logan, Miguel P. Auge, Héctor O. Panarello., 2005. Bicarbonate, sulfate and chloride water in a Shallow, clastic-dominated coastal flow system; Argentina. Groundwater, 37(2): 287-294. https://doi.org/10.1111/j.1745-6584-1999.tb00986.x