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Abstract. The objective of the study was to investigate hydromagnetic nanofluid flow
with Lorentz force, viscous dissipation, Dufour effects, first order chemical reaction and
unsteadiness and considering the flow between parallel plates by formulating necessary
mathematical model. The study considers the dynamic viscosity and thermal conduc-
tivity of the fluid as temperature-dependent variables. The fluid is assumed to be in-
compressible in terms of density, and the influence of gravitational effects is deemed
negligible. The governing equations for the non-Newtonian nanofluid flow, including
the continuity, Navier-Stokes, energy, magnetic induction, and concentration equations,
have been formulated and transformed into their non-dimensional form. Finite difference
numerical approximation method has been used to approximate the systems of the gov-
erning equations in different forms. The profiles of the flow variables have been presented
and analyzed. The results indicate that an increase in the thermophoresis parameter en-
hances the species concentration, whereas higher Schmidt numbers and chemical reaction
parameters lead to a reduction in concentration profiles. Additionally, magnetic induc-
tion profiles increase with a higher Reynolds number but decrease with an increasing
magnetic Prandtl number. Temperature and velocity profiles increase with an increase
in Reynolds number. The study is essential in the improvements of both heat and mass
transfers.

Keywords: Hydromagnetic; Nanofluid; Viscous Dissipation; Dufour; Chemical Reaction;
Lorentz Force.
2020 Mathematics Subject Classification: 81-XX, 33Cxx, 11-XX. MSC2020

1 Introduction

Studies on fluid flows between parallel plates have attracted the attention of many researchers.
[1] investigated the steady flow of an electrically conducting, viscous, incompressible fluid
bounded by two parallel infinite insulated horizontal plates and the heat transfer through it.
The upper plate was given a constant velocity while the lower plate was kept stationary. The
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viscosity of the fluid was assumed to vary with temperature. The effect of an external uniform
magnetic field as well as the action of an inflow perpendicular to the plates together with the
influence of the pressure gradient on the flow and temperature distributions were presented
and discussed. A numerical solution for the governing non-linear ordinary differential equa-
tions was developed.
Analysis of the problem of unsteady squeezing flow of a non-Newtonian nanofluid through
a porous medium between two parallel plates was conducted [5]. The effects of Hall currents
and heat source were taken into consideration. The governing partial differential equations are
transformed into a set of nonlinear ordinary differential equations by using similarity trans-
formations. A homotopy perturbation method is performed to obtain analytical solutions for
that system of equations. The behaviors of the tangential velocity, normal velocity, tempera-
ture, and nanoparticle concentration distributions were discussed analytically and graphically
under the effect of different entering parameters.

Nanofluids have attained a big consideration from scientists because of their enriched
heat transfer properties. Thickness plays a vigorous part in the effectiveness of nanofluids in
the convection progressions as well. [8] planned the rheological performance of a graphene
nanofluid via rotating rheometer. [16] also examined the rheological possessions of 6 carbon-
based nanofluids. Currently, nanofluids are categorized as hybrid nanofluids in various mod-
ules [12]. Hybrid nanofluids become by combining two distinct nanoparticles in base fluid.
The key motivation of it is to moreover advance the thermal features of nanofluids. A study
on adjustable heat transmission of hybrid nanofluid under the influence of outer magnetic
field was carried out. This study dealt with the CFD simulation of natural convection heat
transfer of a hybrid nanofluid in an inverted T-shaped cavity partitioned and saturated by
two different types of porous media [9]. Suspensions of organic and inorganic nanoparticles,
i.e., MWCNTs and Fe3O4, in water, were selected as the working fluid. The macroscopic con-
servation equations for the flow field and heat transfer were modeled via volume averaging
the microscopic equations inside porous media over a representative elementary volume. The
effects of many parameters were investigated. The results showed that, with an increase in
the Rayleigh number, porosity ratio and Darcy number ratio and decrease in the thermal con-
ductivity ratio, the averaged Nusselt number increased.
Investigation of the innovative heat transfer in non-Newtonian hybrid nanofluid collected
with entropy group was conducted. The study investigated the effects of concentration and
radius ratio on convective heat transfer and entropy generation of a non-Newtonian hybrid
nanofluid flowing through a concentric annulus [15]. The nanofluid was prepared by sus-
pending tetramethylammonium hydroxide (TMAH) coated Fe3O4 (magnetite) nanoparticles
and gum arabic (GA) coated carbon nanotubes (CNTs) in water. Variable thermal conductivity
and viscosity are used in simulations. [2] examined the impact of unsteady viscous flow in a
squeezing channel. Silver-gold hybrid nanofluid particles with different shapes were inserted
in the base fluid engine oil. Flow and heat transfer mechanism were detected in the presence
of magneto-hydrodynamics between the two parallel infinite plates. The thermal conductivity
models, that is, Yamada-Ota and Hamilton-Crosser models were used to investigate various
shapes (Blade, platelet, cylinder, and brick) of hybrid nanoparticles. The model was made up
of paired high nonlinear partial differential equations that were then transformed into ordi-
nary differential equations which are coupled and strong nonlinear using the boundary layer
approximation.
Additionally, the analysis showed that the Yamada-Ota model of the Hybrid nanofluid gains
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high temperature and velocity profile than the Hamilton-Crosser model of the hybrid nanofluid.
Also, both the models showed increasing trends toward increasing the volume fraction rate of
silver-gold hybrid nanoparticles. It was also observed that the hybrid nanoparticles’ perfor-
mance was far better than the common nanofluids. [14] investigated the flow and heat transfer
of magneto-hydrodynamic squeezing nanofluid flow between two infinite parallel plates had
been investigated. The fluid used was an equal mixture of Ethylene-glycol and water. This pa-
per discusses hybrid nanoparticles, including Fe3O4 and MoS2. The nonlinear equations have
been solved by Akbari-Ganji’s method. The effect of Harman number, base fluid, squeeze
number, and Heat source on flow and heat transfer have been computed. The result shows
that the Akbari-Ganji’s method and the numerical method were in good agreement. Akbari-
Ganji’s method can be useful for such problems, and we can see that the maximum difference
in velocity profile and thermal profile between AGM and the numerical method was less than
one per cent.
The findings showed that velocity profile reduced by an increase in squeeze number and Hart-
man number. The thermal profile raised with an increase in squeeze number, but it decreased
with increasing in Hartman number and heat source parameter. [4] studied the impacts of vis-
cous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat
transfer mechanisms for a magneto-hydrodynamic (MHD) nanofluid flow in parallel disks
during a suction/blowing process. First, the governing momentum and energy equations
were transformed into a non-dimensional form and then the obtained equations were solved
by the modified Adomian decomposition method (ADM), known as Duan-Rach approach
(DRA).
In addition, the effects of the radiation parameter, suction/blowing parameter, magnetic pa-
rameter, squeezing number and nanoparticles concentration on the heat transfer and flow field
were investigated in the results. The results showed that the fluid velocity increased with in-
creasing suction parameter, while the temperature profile decreases with increasing suction
parameter. [13] natural convection of non-Newtonian bio-nanofluids flow between two vertical
flat plates was investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl
Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as
Titania ( TiO2 and Alumina ( Al2O3 were added to them.
The effective thermal conductivity and viscosity of nanofluids were calculated through Maxwell-
Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical
method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin
(GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), were used to solve
the present problem. The influence of some physical parameters such as nanofluid volume
friction on non-dimensional velocity and temperature profiles were discussed. The results
show that SCMC- TiO2 had higher velocity and temperature values than other nanofluid
structures.

2 Mathematical formulation

Figure 1 shows the physical configuration of the non-Newtonian nanofluid flow between
two parallel horizontal plates in three dimensions. By the no-slip boundary condition, at
time t ≤ 0, for 0 ≤ (y, z) ≤ h, the nanofluid flow variables v(y, z, 0) = 0, w(y, z, 0) = 0,
T(y, z, 0) = Tsp, C = Csp, Hy(y, z, 0) = 0 and Hz(y, z, 0) = 0. When the nanofluid gets in
contact with the moving plate at anytime t > 0, the flow variables v(0, 0, t) = V∞, w(0, 0, t) =
V∞, T(0, 0, t) = Tmp, C(0, 0, t) = Cmp, Hy(0, 0, t) = Hm and Hz(0, 0, t) = Hm for (y, z) = 0.
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When (y, z) = h, the flow variables v(y, z, t) = 0, w(y, z, t) = 0, T(y, z, t) = Tsp, C(y, z, t) = Csp,
Hy(y, z, t) = 0 and Hz(y, z, t) = 0.

Figure 2.1: Physical Configuration of the Flow.

3 Governing equations

Assuming that the velocity of the fluid flow along the x-axis is very small compared to the
velocities in y and z-axes, then u → 0. Thus,

∂u
∂x

= 0. (3.1)

This implies that the flow variables are independent of x but only depend on y, z and time
t.

3.1 Continuity equation

∂v
∂y

+
∂w
∂z

= 0. (3.2)

3.2 Navier-Stokes equation along x-axis

∂u
∂t

+ v
∂u
∂y

+ w
∂u
∂z

= −∂P
∂x

+
µ∞

ρn f

(
1 + δ

(
T − Tsp

)) (∂2u
∂y2 +

∂2u
∂z2

)
.
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3.3 Navier-Stokes equation along y-axis

∂v
∂t

+ v
∂v
∂y

+ w
∂v
∂z

= −∂P
∂y

+
µ∞

ρn f

(
1 + δ

(
T − Tsp

)) (∂2v
∂y2 +

∂2v
∂z2

)
+ Btg(T − Tsp) + Bcg(C − Csp).

−σµ2
e

[(
H⃗msinα + H⃗y

)
v −

(
H⃗mcosα + H⃗z

)
w
] (

H⃗msinα + H⃗y

)
. (3.3)

3.4 Navier-Stokes equation along z-axis

∂w
∂t

+ v
∂w
∂y

+ w
∂w
∂z

= −∂P
∂z

+
µ∞

ρn f

(
1 + δ

(
T − Tsp

)) (∂2w
∂y2 +

∂2w
∂z2

)
.

+σµ2
e

[(
H⃗msinα + H⃗y

)
v −

(
H⃗mcosα + H⃗z

)
w
] (

H⃗mcosα + H⃗z

)
. (3.4)

−∂P
∂x

= −
∂(ρn f gx)

∂x
= 0. (3.5)

−∂P
∂y

= −
∂(ρn f gy)

∂y
= −ρn f g. (3.6)

−∂P
∂y

= −
∂(ρn f gz)

∂z
= 0. (3.7)

3.5 Equation of energy

∂T
∂t

+ v
∂T
∂y

+ w
∂T
∂z

=
k∞

ρn f cp

[
1 + ϵ

(
T − Tsp

Tmp − Tsp

)](
∂2T
∂y2 +

∂2T
∂z2

)
+

µ∞

ρn f cp (1 + δ (T − T∞))

(
4
(

∂u
∂y

)2

+

(
∂v
∂z

+
∂w
∂y

)2
)
+

σµ2
e

[(
H⃗msinα + H⃗y

)
v −

(
H⃗mcosα + H⃗z

)
w
]2

ρn f cp
.

(3.8)

3.6 Magnetic induction equation along x-axis

∂H⃗x

∂t
= 0. (3.9)

3.7 Magnetic induction equation along y-axis

∂H⃗y

∂t
=
(

H⃗msinα + H⃗y

) ∂v
∂z

−
(

H⃗mcosα + H⃗z

) ∂w
∂z

+ v
∂H⃗y

∂z
+

1
µeσ

(
∂2H⃗z

∂y2 +
∂2H⃗z

∂z2

)
(3.10)

3.8 Magnetic induction equation along z-axis

∂H⃗z

∂t
=
(

H⃗mcosα + H⃗z

) ∂w
∂y

−
(

H⃗msinα + H⃗y

) ∂v
∂y

− v
∂H⃗y

∂y
+

1
µeσ

(
∂2H⃗y

∂y2 +
∂2H⃗y

∂z2

)
. (3.11)
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3.9 Equation of concentration

∂C
∂t

= Dm

(
∂2C
∂y2 +

∂2C
∂z2

)
− v

∂C
∂y

− w
∂C
∂z

+
DmKt

Tm

(
∂2T
∂y2 +

∂2T
∂z2

)
− kr(C − C∞). (3.12)

3.10 Initial and boundary conditions

The above equations are subject to the following initial and boundary conditions:
Initial conditions

t ≤ 0 : v = 0, w = 0, T = Tsp, C = Csp, Hy = Hz = 0, 0 ≤ y, z ≤ h (3.13)

Boundary conditions

t > 0 :
{

v = V∞, w = V∞, T = Tmp, C = Cmp, Hy = Hz = Hm (y, z) = 0
v = 0, w = 0, T = Tsp, C = Csp, Hy = Hy = 0 (y, z) = h

}
. (3.14)

3.11 Non-dimensionalization process

The following non-dimensional variables have been used for the present hydromagnetic flow
problem

Hy = H∗Hm, Hz = H∗
z Hm, y = hy∗, z = hz∗,

t =
h2t∗

νn f

, w = V∞w∗, v = V∞v∗, T = Tsp +
(
Tmp − Tsp

)
T∗, C = Csp +

(
Cmp − Csp

)
C∗, (3.15)

where V∞ represents the velocity of the moving plate, (y∗, z∗) represent dimensionless
cartesian coordinates, H∗ represents non-dimensional induced magnetic field, C∗ represents
non-dimensional concentration, νn f represents kinematic viscosity, T∗ represents non-dimensional
temperature, v∗, w∗ represent non-dimensional velocity along y and z directions respectively
and h is the distance between the two plates [3].
For easy writing, let v∗ = v, w∗ = w, H∗ = H, T∗ = T, C∗ = C, y∗ = y and z∗ = z.

3.12 Continuity equation

∂v
∂y

+
∂w
∂z

= 0. (3.16)

3.13 Navier-Stokes equation along y-axis

∂v
∂t

+ Re.v
∂v
∂y

+ Re.w
∂v
∂z

=
∂2v
∂y2 +

∂2v
∂z2 − M.

[(
sinα + H⃗y

)
v −

(
cosα + H⃗z

)
w
] (

sinα + H⃗y

)
.

(3.17)

3.14 Navier-Stokes equation along z-axis

∂w
∂t

+ Re.v
∂w
∂y

+ Re.w
∂w
∂z

=
∂2w
∂y2 +

∂2w
∂z2 + M.

[(
sinα + H⃗y

)
v −

(
cosα + H⃗z

)
w
] (

cosα + H⃗z

)
.

(3.18)
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3.15 Equation of energy

∂T
∂t

+ Re.v
∂T
∂y

+ Re.w
∂T
∂z

=
1
Pr

(
∂2T
∂y2 +

∂2T
∂z2

)
+

Ec

(
4
(

∂u
∂y

)2

+

(
∂v
∂z

+
∂w
∂y

)2
)
+ M.Ec

[(
sinα + H⃗y

)
v −

(
cosα + H⃗z

)
w
]2

. (3.19)

3.16 Magnetic induction equation along x-axis

∂H⃗x

∂t
= 0. (3.20)

3.17 Magnetic induction equation along y-axis

∂H⃗y

∂t
= Re.

(
sinα + H⃗y

) ∂v
∂z

− Re.
(

cosα + H⃗z

) ∂w
∂z

+ Re.v
∂H⃗y

∂z
+

1
Prm

(
∂2H⃗z

∂y2 +
∂2H⃗z

∂z2

)
. (3.21)

3.18 Magnetic induction equation along z-axis

∂H⃗z

∂t
= Re.

(
cosα + H⃗z

) ∂w
∂y

− Re.
(

sinα + H⃗y

) ∂v
∂y

− Re.v
∂H⃗y

∂y
+

1
Prm

(
∂2H⃗y

∂y2 +
∂2H⃗y

∂z2

)
. (3.22)

3.19 Equation of concentration

∂C
∂t

=
1
Sc

(
∂2C
∂y2 +

∂2C
∂z2

)
− Re.v

∂C
∂y

− Re.w
∂C
∂z

+ Sr

(
∂2T
∂y2 +

∂2T
∂z2

)
− γC. (3.23)

3.20 Non-dimensional initial and boundary conditions

The above equations are subject to the following initial and boundary conditions:
Initial conditions

t ≤ 0 : v = 0, w = 0, T = 0, C = 0, Hy = Hz = 0, 0 ≤ (y, z) ≤ 1 (3.24)

Boundary conditions

t > 0 :
{

w = 1, v = 1, T = 1, C = 1, Hy = Hz = 1 (y, z) = 0
v = 0, w = 0, T = 0, C = 0, Hy = Hy = 0 (y, z) = 1

}
. (3.25)

4 Finite difference form of the governing equations

The finite difference method has been employed to approximate the nonlinear partial differ-
ential equations as algebraic difference expressions, which were then simulated in MATLAB.
The step sizes for the spatial coordinates and time are set to ∆t = 0.00001 and ∆y = ∆z = 0.02
respectively.



144 K. Tuesday, M. Danny and M. Nictor

4.1 Navier-Stokes equation along y-axis

vk+1
j = vk

j − Re.v.∆t
vk

j+1 − vk
j−1

2∆y
− Re.w.∆t

vk
j+1 − vk

j−1

2∆z
+

vk
j+1 − 2vk

j + vk
j−1

(∆y)2 +

vk
j+1 − 2vk

j + vk
j−1

(∆z)2 − M.
[(

sinα + H⃗k
yj

)
vk

j −
(

cosα + H⃗k
zj

)
wk

j

] (
sinα + H⃗k

yj

)
. (4.1)

4.2 Navier-Stokes equation along z-axis

wk+1
j = wk

j − Re.v.∆t
wk

j+1 − wk
j−1

2∆y
− Re.w.∆t

wk
j+1 − wk

j−1

2∆z
+

wk
j+1 − 2wk

j + wk
j−1

(∆y)2 +

wk
j+1 − 2wk

j + wk
j−1

(∆z)2 − M.
[(

sinα + H⃗k
yj

)
vk

j −
(

cosα + H⃗k
zj

)
wk

j

] (
cosα + H⃗k

zj

)
. (4.2)

4.3 Equation of energy

Tk+1
j = Tk

j −Re.vk
j ∆t

(
Tk

j+1 − Tk
j−1

2∆y

)
−Re.wk

j ∆t

(
Tk

j+1 − Tk
j−1

2∆z

)
+

1
Pr

.∆t

(
Tk

j+1 − 2Tk
j + Tk

j−1

(∆y)2

)
+

1
Pr

.∆t

(
Tk

j+1 − 2Tk
j + Tk

j−1

(∆z)2

)
+ Ec.∆t

4

(
uk

j+1 − uk
j−1

2∆y

)2

+

(
uk

j+1 − uk
j−1

2∆z
+

wk
j+1 − wk

j−1

2∆y

)2
+

(4.3)

M.Ec.∆t
[(

sinα + H⃗k
yj

)
vk

j −
(

cosα + H⃗k
zj

)
wk

j

]2
. (4.4)

4.4 Magnetic induction equation along x-axis

H⃗k+1
xj

− H⃗k
xj

∆t
= 0. (4.5)

4.5 Magnetic induction equation along y-axis

H⃗k+1
yj

= H⃗k
yj
+ Re.∆t

(
sinα + H⃗y

k
j

)(vk
j+1 − vk

j−1

∆z

)
+ Re.vk

j ∆t

 H⃗y
k
j+1 − H⃗y

k
j−1

∆z

 .

−Re.∆t
(

cosα + H⃗z
k
j

)(wk
j+1 − wk

j−1

∆z

)
+

∆t
Prm

 H⃗z
k
j+1 − 2H⃗z

k
j + H⃗z

k
j−1

(∆y)2 +
H⃗z

k
j+1 − 2H⃗z

k
j + H⃗z

k
j−1

(∆z)2

 .

(4.6)
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4.6 Magnetic induction equation along z-axis

H⃗k+1
yj

= H⃗k
yj
+ Re.∆t

(
cosα + H⃗z

k
j

)(wk
j+1 − wk

j−1

∆y

)
+ Re.vk

j ∆t

 H⃗y
k
j+1 − H⃗y

k
j−1

∆y



−Re.∆t
(

sinα + H⃗y
k
j

)(vk
j+1 − vk

j−1

∆y

)
+

∆t
Prm

 H⃗y
k
j+1 − 2H⃗y

k
j + H⃗y

k
j−1

(∆y)2 +
H⃗y

k
j+1 − 2H⃗y

k
j + H⃗y

k
j−1

(∆z)2

 .

(4.7)

4.7 Equation of concentration

Ck+1
j = Ck

j +
∆t
Sc

(
Ck

j+1 − 2Ck
j + Ck

j−1

(∆y)2 +
Ck

j+1 − 2Ck
j + Ck

j−1

(∆z)2

)
− Re.vk

j .∆t

(
Ck

j+1 − Ck
j−1

2∆y

)
−

Re.wk
j .∆t

(
Ck

j+1 − Ck
j−1

2∆z

)
+ Sr.∆t

(
Tk

j+1 − 2Tk
j + Tk

j−1

(∆y)2 +
Tk

j+1 − 2Tk
j + Tk

j−1

(∆z)2

)
− γC∗.∆t. (4.8)

4.7.1 Initial and boundary conditions in finite difference form

From equations 26 to 33 the corresponding initial and boundary conditions in non-dimensional
form are:
Initial conditions

t ≤ 0 : v(j, 0) = 0, w = 0, T(j, 0) = 0, C(j, 0) = 0, Hy(j, 0) = Hz(j, 0) = 0, 0 ≤ (y, z) ≤ 1. (4.9)

Boundary conditions

t > 0 :
{

v(0, k) = 1, w(0, k) = 1, T(0, k) = 1, C(0, k) = 1, Hy(0, k) = Hz(0, k) = 1 (y, z) = 0
v(j, k) = 0, w(j, k) = 0, T(j, k) = 0, C(j, k) = 0, Hy(j, k) = Hz(j, k) = 0 (y, z) = 1

}
.

(4.10)

5 Results and discussion

Figures 2 and 3 demonstrate that as the angle of inclination of the applied magnetic field
increases, the fluid velocity decreases. This is because a larger inclination angle strengthens
the applied magnetic field, thereby increasing the Lorentz force. The enhanced Lorentz force
acts against the fluid flow, resulting in a reduction in the fluid’s velocity within the flow
problem.

Figures 4 and 5 show that an increase in the Reynolds number (Re) leads to an increase in
the velocity profiles. [3] The Reynolds number measures the balance between inertial forces
and viscous forces in fluid flow. A higher Reynolds number suggests weaker viscous forces,
enabling fluid particles to move more rapidly due to reduced resistance. On the other hand,
a lower Reynolds number indicates stronger viscous forces, leading to greater resistance and,
consequently, a slower fluid velocity. Figure 6 shows that increasing the Prandtl number leads
to a decrease in the temperature of the fluid. [6] The Prandtl number plays a critical role in
determining the heat transfer behavior of a fluid, as it affects the mechanisms of heat transfer
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Figure 5.1: Velocity profiles (v) for differ-
ent values of α.

Figure 5.2: Velocity profiles (w) for differ-
ent values of α.

Figure 5.3: Velocity profiles (w) for differ-
ent values of Re.

Figure 5.4: Velocity profiles (v) for differ-
ent values of Re.

within the fluid and to surrounding surfaces. Observations indicate that as the Prandtl num-
ber increases, the fluid temperature decreases. Defined as the ratio of momentum diffusivity
to thermal diffusivity, a higher Prandtl number implies reduced thermal diffusivity and in-
creased viscosity. This reduction in thermal diffusivity leads to a thinner thermal boundary
layer, resulting in lower fluid temperatures. Figure 7 illustrates that the temperature of the
nanofluid rises with an increase in the Eckert number. The Eckert number, defined as the
ratio of the flow’s kinetic energy to its enthalpy, highlights that higher values signify a dom-
inance of kinetic energy over enthalpy. This dominance promotes convective heating, where
the kinetic energy of the fluid is transformed into thermal energy as it moves over a stretching
plate. This process generates internal energy, leading to a rise in the fluid’s temperature [7].
Figure 8 illustrates that fluid temperature increases with a higher magnetic number. The mag-
netic number, representing the ratio of magnetic forces to fluid inertia forces, indicates that
stronger magnetic forces and weaker inertia forces correspond to higher values. As moving
fluid particles interact with an intensified magnetic field, and an electric current is generated.
Collisions between fluid particles and the charged particles from this current induce vibra-
tions, which produce heat in the form of thermal energy. Thus, a rise in the magnetic number
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Figure 5.5: Temperature profiles (T) for
different values of Pr.

Figure 5.6: Temperature profiles (T) for
different values of Ec

leads to an increase in the fluid’s temperature [6]. Figure 9 shows that increasing the Reynolds

Figure 5.7: Temperature profiles (T) for
different values of M.

Figure 5.8: Temperature profiles (T) for
different values of Re.

number leads to an increase in the temperature profiles. Since Reynolds number is the ratio
of inertia forces to viscous forces, so increasing the Reynolds number implies that the viscous
forces become less significant. A decrease in viscous forces means that fluid particles have
increased motion and heat is generated due to the collision of the particles which are moving
at high velocity thereby increasing fluid temperature
Figures 10 and 13 show that increasing magnetic Prandtl number leads to a decrease in in-
duced magnetic field long y and z directions. Since the magnetic Prandtl number is the ratio of
momentum diffusivity to the magnetic diffusivity, so increasing the magnetic Prandtl number
implies a reduction in magnetic diffusivity, which leads to a decrease in the induced magnetic
field by the motion of the conducting medium and thus induced magnetic profiles along y
and z decrease. Figures 11 and 12 show that an increase in the Reynolds number leads to an
increase in the induced magnetic field profiles along the y and z directions. The Reynolds
number, being the ratio of inertial forces to viscous forces, implies that a higher Reynolds
number corresponds to reduced viscous forces. This reduction in viscous forces enhances
the interaction between the fluid and the magnetic field, thereby increasing the induced mag-
netic field in both the y and z directions [17]. Figure 14 shows that the concentration of the
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Figure 5.9: Magnetic induction profiles
along y (Hy) for different values of Prm .

Figure 5.10: Magnetic induction profiles
along y (Hy) for different values of Re.

Figure 5.11: Magnetic induction profiles
along z (Hz) for different values of Re.

Figure 5.12: Magnetic Induction profiles
along z (Hz) for different values of Prm .

nanofluid decreases as the Schmidt number increases. The Schmidt number, being the ratio of
momentum diffusivity to mass diffusivity of particles, indicates that a higher Schmidt num-
ber corresponds to reduced mass diffusivity. This reduction in mass diffusivity results in a
decrease in the concentration profiles of the nanofluid. Figure 15 shows that an increase in the
chemical reaction parameter leads to a decrease in the concentration of the fluid particles [11].
A higher chemical reaction parameter indicates that the chemical reaction proceeds at a faster
rate relative to fluid transport. As a result, more reactants are consumed or converted into
products in a given time, leading to a decrease in the concentration of the reactants in the
fluid. In a chemical reaction, the concentration of reactant species decreases as they undergo
chemical changes to form products. As the reaction progresses, reactant molecules collide
and react, forming new products. Consequently, the concentration of the reacting species
decreases because the molecules are being converted into products, leading to a decrease in
chemical molecular diffusivity [10].
Figure 16 shows that increasing the Soret number increases concentration profiles [10]. The
Soret number determines the effect of temperature gradients on inducing significant mass
diffusion effects. Increasing the Soret number generates a mass flux that leads to an increase
in the mass boundary layer thickness, thereby increasing the concentration of the fluid.
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Figure 5.13: Concentration profiles (C) for
different values of Sc.

Figure 5.14: Concentration profiles (C) for
different values of γ.

In Figure 17, it is shown that increasing the magnetic number leads to a decrease in the ve-
locity profile. This is because a higher magnetic number enhances the Lorentz force, which
resists the fluid flow and thus reduces the velocity of the fluid. [3, 6].

Figure 5.15: Concentration profiles (C) for
different values of Sr.

Figure 5.16: Velocity profiles (v) for differ-
ent values of M.

Conclusion

Von-Neumann stability analysis was conducted to check the stability and convergence of the
mathematical model developed. From the results, it is observed that increasing values of
Reynolds number leads to an increase in velocity profiles while increasing values of magnetic
number and angle of inclination leads to a decrease in the velocity profile. Increasing values of
Reynolds number, Eckert number, magnetic parameter leads to increase in temperature profile
while increasing the values of the Prandtl number leads to a decrease in temperature profile.
Increasing values of Reynolds number leads to an increase in induced magnetic field profiles
while increasing values of magnetic Prandtl number leads to a decrease in induced magnetic
field profiles. Increasing the values of the Soret number leads to an increase in concentration
profiles while increasing values of Schmidt number and chemical reaction parameter leads to
a decrease in concentration profile.
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Appendix

Nomenclature

Symbol Meaning
P Pressure (Nm−2)

T Temperature (K)
C Species concentration (mole/Kg)
Tmp Temperature of the nanofluid on the moving plate (K)
Tsp Temperature of the nanofluid on the stationary plate (K)
cp Specific heat capacity at constant pressure (JKg−1k−1)

Cmp Concentration of the nanofluid at the moving plate (mole/Kg)
Csp Concentration of the nanofluid at the stationary plate (mole/Kg)
Dm Mass diffusivity/Chemical molecular diffusivity (m2s−1)

H⃗m Applied magnetic field (Wbm−2)

kn f Coefficient of the thermal conductivity of the nanofluid (Wm−1k−1)

t Time (s)
H⃗x Induced magnetic field along x direction (Am−1)

H⃗y Induced magnetic field along y direction (Am−1)

J⃗ Current density (Am−2)

H⃗ Magnetic field strength (Am−1)

Tm Mean fluid temperature (K)
Kt Thermal diffusion ratio (m2s)
kp Darcy permeability (m2)

kr Chemical reaction coefficient
Re Reynolds number
Pr Prandtl number
Prm Magnetic Prandtl number
Sr Soret number
Sc Schmidt number
M Magnetic number
γ Chemical reaction parameter
Ec Eckert number
α Angle of inclination
µn f Coefficient of dynamic viscosity of the nanofluid Kgm−1s−1

ρn f Density of the nanofluid (Kgm−3)

σ Electrical conductivity (Sm−1)

µe Magnetic permeability (Hm−1)

νn f Kinematic viscosity of the nanofluid (m2s−1)
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