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Abstract. In this work, we study the existence and the asymptotic stability of the
continuous solutions for integral equations of product type in a general form. Our
result will be given in more general conditions. Moreover, the integral equation of
product type offered in this work contains several specific forms studied recently. The
analysis uses the techniques of measures of noncompactness and Darbo’s fixed point
theorem.
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1 Introduction

In this paper, we consider the following nonlinear integral equation of product type

x(t) = f1(t, x(t)) + f2

(
t,
∫ t

0
u(t, s, x(s))ds

)
× f3

(
t,
∫ t

0
v(t, s, x(s))ds

)
, t ∈ R+, (1.1)

where fi, i = 1, 2, 3 and u, v are continuous functions while x(t) ∈ C(R+) is an unknown
function.
Integral equations of product type are an important class of integral equations. They play a
fundamental role in modeling, including applied mathematics, physics and biology science,
particularly in the study of the spread of an infectious disease that does not induce perma-
nent immunity (see, for example [3, 11, 12, 17, 18]).
Numerous researchers have extensively explored the existence and the qualitative behav-
ior of the solutions for the integral equations of product type. Gripenberg [13] studied the
qualitative behavior of solutions of the following integral equation of product type

x(t) = k
[

p(t) +
∫ t

0
A(t − s)x(s)ds

]
×

[
q(t) +

∫ t

0
B(t − s)x(s)ds

]
. (1.2)
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Pachpatte [16], Abdeldaim [1] and Li et al. [14] studied the roundedness, the asymptotic be-
havior and continuous solutions of (1.2).
Bellour et al. [8] studied the existence of an integrable solution of a particular form of (1.1)
on the interval [0, 1].
Bousselsal and Bellour [10] studied the existence and asymptotic stability of continuous so-
lutions for the following particular form of (1.1)

x(t) = f1(t, x(t)) +
(

p(t) +
∫ t

0
u(t, s, x(s))ds

)
×

(
q(t) +

∫ t

0
v(t, s, x(s))ds

)
, t ∈ R+,

In contrast, Ardjouni and Djoudi [2] investigated the existence and the approximation of
solutions to initial value problems of nonlinear hybrid Caputo fractional integro-differential
equations, which can be transformed into the following integral equation of product type.

x(t) =
[

p(t) +
1

Γ(β)

∫ t

0
(t − s)β−1g(s, x(s))ds

]
×

[
θ +

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds

]
,

on a bounded interval [0, a].
Olaru [15] studied the existence and the uniqueness of the continuous solution of the follow-
ing integral equation

x(t) =
m

∏
i=1

(
gi(t) +

∫ t

a
Ki(t, s, x(s))ds

)
, (1.3)

on a bounded interval [a, b], where Ki, i = 1, ..., n are continuous functions satisfying Lips-
chitz conditions with respect to the last variable.
Later, Boulfoul et al. [9] studied the existence of an integrable solution of a more generalized
version of (1.3) on R+.
This manuscript is motivated by extending and generalizing the work of [10] and investi-
gating the existence of continuous solutions and their asymptotic stability for (1.1) on R+

under fairly simple conditions. An example is provided to illustrate the importance and
applicability of our results.

2 Auxiliary facts and results

In this section, we provide some notations, definitions and auxiliary facts which will be
needed for stating our results. Denote by BC(R+) the Banach space consists of all real
functions defined, continuous and bounded on R+. It is equipped with the standard norm

∥x∥ = sup
t∈R+

|x(t)|.

For later use, we assume that X is a Banach space. Let B(X) denote the family of all
nonempty bounded subsets of X and W(X) the subset of B(X) consisting of all relatively
compact subsets of X. Finally, let Br denote the closed ball centered at 0 with radius r.
Recall the following definition of the concept of the axiomatic measure of noncompactness.

Definition 2.1. [6]. A function µ : B(X) −→ R+ is said to be a measure of noncompactness
if it satisfies the following conditions:

(1) The family ker(µ) = {M ∈ B(X) : µ(M) = 0} is nonempty and ker(µ) ⊂ W(X).
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(2) M1 ⊂ M2 ⇒ µ(M1) ≤ µ(M2).

(3) µ(co(M)) = µ(M), where co(M) is the convex hull of M.

(4) µ(λM1 + (1 − λ)M2) ≤ λµ(M1) + (1 − λ)µ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with M1 bounded
and M1 ⊇ M2 ⊇ ... ⊇ Mn ⊇ ... such that lim

n→∞
µ(Mn) = 0, then M∞ :=

⋂∞
n=1 Mn is

nonempty.
A measure µ is said to be sublinear if it satisfies the following two conditions:

(6) µ(λM) = |λ|µ(M) for λ ∈ R.

(7) µ(M1 + M2) ≤ µ(M1) + µ(M2).

The family ker(µ) described in (1) is called the kernel of the measure of noncompactness
µ. More information about measures of noncompactness and their properties can be found
in [5].

In what follows, we will use a measure of noncompactness in the space BC(R+), which
was introduced in [5]. In order to recall the definition of this measure, let us fix a nonempty
bounded subset X ∈ BC(R+) and a positive number T > 0. For x ∈ X and ε > 0, let us
define the following quantities (cf. [5]):

ωT(x, ε) = sup {|x(s)− x(t)| : t, s ∈ [0, T], |t − s| ≤ ε} .

Further, let us put
ωT(X, ε) = sup

{
ωT(x, ε) : x ∈ X

}
,

ωT
0 (X) = lim

ε−→0
ωT(X, ε), ω0(X) = lim

T−→∞
ωT

0 (X).

For a fixed number t ≥ 0, we denote

d(X(t)) = sup {|x(t)− y(t)| : x, y ∈ X} ,

and
d(X) = lim sup

t−→∞
d(X(t)).

Finally, the function µ is defined on the family MC by putting

µ(X) = ω0(X) + d(X).

It can be shown [5] that the function µ is a measure of noncompactness in the space BC(R+)
with the kernel ker(µ) consisting of all nonempty and bounded sets X such that functions
from X are equicontinuous and nondecreasing on R+. For other properties of µ, see [5].

3 Main result

We will use the following fixed point theorem.

Theorem 3.1. [4] Let Q be a nonempty bounded closed convex subset of the space E and let F :
Q −→ Q be a continuous operator such that µ(FX) ≤ kµ(X) for any nonempty subset X of Q,
where k ∈ [0, 1) is a constant. Then F has a fixed point in the set Q.
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Equation (1.1) will be studied under the following assumptions:

(i) The functions u, v : R+ × R+ × R → R are continuous and there exist functions ai ∈
BC(R+) (i = 1, 2) such that |u(t, s, x)| ≤ k1(t, s)a1(s) and |v(t, s, x)| ≤ k2(t, s)a2(s) for
(t, s, x) ∈ R+ × R+ × R, where ki : R+ × R+ → R+ (i = 1, 2) are measurable functions
and the linear Volterra operators Ki generated by ki,

(Kix) (t) =
∫ t

0
ki(t, s)x(s)ds, (3.1)

transform the space BC(R+) into itself. Let ∥Ki∥ be the norm of the operator Ki, i = 1, 2.

(ii) lim
t−→+∞

(Ki1) (t) = lim
t−→+∞

∫ t
0 ki(t, s)ds = 0, for i = 1, 2.

(iii) The functions fi : R+ × R → R (i = 1, 2, 3) are continuous such that fi(t, 0) ∈ BC(R+).
Let fi be the norm of fi(t, 0) in BC(R+) for i = 1, 2, 3.

(iv) There exist constants pi > 0 and functions λi ∈ BC(R+) for i = 1, 2, 3 such that
| fi(t, x)− fi(t, y)| ≤ λi(t) |x − y|pi with p1 = 1 and ∥λ1∥ < 1.

To prove our main result, we need the following lemma.

Lemma 3.2. Under the assumptions (i)− (iv), the operators

(F2x)(t) = f2

(
t,
∫ t

0
u(t, s, x(s))ds

)
,

(F3x)(t) = f3

(
t,
∫ t

0
v(t, s, x(s))ds

)
,

map BC(R+) continuously into itself.

Proof. We only prove that F2 maps BC(R+) continuously into itself and the proof of F3 is
similar.
The operator F2 maps BC(R+) into C(R+). Moreover, let x ∈ BC(R+), since

| (F2x) (t)| ≤ ∥λ2∥∥a1∥p2∥K1∥p2 + f2.

Hence, F2 maps BC(R+) into itself.
Now, to prove that F2 is continuous, let {xn} be an arbitrary sequence in BC(R+) which
converges to x ∈ BC(R+).
Then, from the assumption (ii), for ε > 0, there exist n1 ∈ N and T > 0, such that for all
n ≥ n1 and t ≥ T, we have

∥xn∥ ≤ 1 + ∥x∥, (K11)p2 (t) ≤ ε

2p2∥a1∥p2 + 1
.

It follows that, for n ≥ n1 and t ≥ T, we have

|(F2xn − F2x)(t)| ≤ 2p2∥λ2∥∥a1∥p2 (K11) (t) ≤ ε. (3.2)

On the other hand, since u is uniformly bounded on the compact set [0, T]× [0, T]× [−1 −
∥x∥, 1 + ∥x∥], hence there exists n2 ∈ N such that for all n ≥ n2, we have

sup{|u(t, s, xn(s))− u(t, s, x(s))|, (t, s) ∈ [0, T]× [0, T], n ≥ n2} ≤
(

ε

T∥λ2∥+ 1

)p2

,
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This implies that, for all n ≥ n2 and t ∈ [0, T]

|(F2xn − F2x)(t)| ≤ ε. (3.3)

Then, from (3.2) and (3.3), we deduce that, for all n ≥ n0 = max(n1, n2)

∥F2xn − F2x∥ ≤ ε.

Thus, F2 maps BC(R+) continuously into itself.

Remark 3.3. [7] The concept of the asymptotic stability of a solution x = x(t) of Eq. (1.1) is
understood in the following sense.
For any ε > 0 there exist T > 0 and r > 0 such that if x, y ∈ Br and x = x(t), y = y(t) are
solutions of (1.1) then |x(t)− y(t)| ≤ ε for t ≥ T.

Now we are in a position to state our main result.

Theorem 3.4. Under the assumptions above the nonlinear integral equation (1.1) has at least an
asymptotically stable solution x ∈ BC(R+).

Proof. Solving Eq. (1.1) is equivalent to finding a fixed point of the operator A, where
Ax(t) = f1(t, x(t)) + (F2x)(t) × (F3x)(t). We will show that A satisfies the conditions of
Theorem 3.1. The proof is split into four steps.

Step 1. We first show that there exists Br0 from BC(R+) such that A(Br0) ⊂ Br0 . To see this,
let x ∈ Br. Then

∥Ax∥ ≤∥ f1(t, x(t))∥+ ∥(F2x)(t)× (F3x)(t)∥
≤∥λ1∥∥x∥+ f1 + ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)× ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)

≤∥λ1∥r + f1 + ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)× ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3).

Since ∥λ1∥ < 1, we deduce that the operator A transforms the ball Br0 into itself for r0 =
f1+( f2+∥λ2∥∥K1∥p2∥a1∥p2 )×( f3+∥λ3∥∥K2∥p3∥a2∥p3 )

1−∥λ1∥ .
Step 2. The operator A maps Br0 continuously into itself. To see this, take an arbitrary number
ϵ > 0 and a convergent sequence (xn) to (x) in Br0 .
Hence, by Lemma 3.2, there exists n0 such that for all n ≥ n0, we have

∥xn − x∥ ≤ ϵ

3∥λ1∥
, ∥F2xn − F2x∥ ≤ ϵ

3(∥λ3∥∥a2∥p3∥K2∥p3 + f3)
,

∥F3xn − F3x∥ ≤ ϵ

3(∥λ2∥∥a1∥p2∥K1∥p2 + f2)
.

Which implies, for all n ≥ n0,

∥Axn − Ax∥ ≤∥λ1∥∥xn − x∥+ ∥(F2xn)× (F3xn)− (F2x)× (F3x)∥
≤∥λ1∥∥xn − x∥+ ∥F2xn∥∥F3xn − F3x∥+ ∥F3x∥∥F2xn − F2x∥
≤∥λ1∥∥xn − x∥+ (∥λ2∥∥a1∥p2∥K1∥p2 + f2)∥F3xn − F3x∥
+ (∥λ3∥∥a2∥p3∥K2∥p3 + f3)∥F2xn − F2x∥

≤ϵ.
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We deduce that the operator A maps Br0 continuously into itself.
Step 3. We illustrate that there exists γ ∈ [0, 1) such that µ(AX) ≤ γµ(X) for all subset X of
Br0 . To see this, take an arbitrary number t ≥ 0. Then for any x, y ∈ X, we have

|Ax(t)− Ay(t)| ≤∥λ1∥|x(t)− y(t)|+ |F2x(t)||F3x(t)− F3y(t)|+ |F3y(t)||F2x(t)− F2y(t)|
≤∥λ1∥∥x − y∥+ ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)|F3x(t)− F3y(t)|
+ ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)|F2x(t)− F2y(t)|

≤∥λ1∥∥x − y∥+ ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)2p3∥λ3∥∥a2∥p3 (K21) (t)

+ ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)2p2∥λ2∥∥a1∥p2 (K11) (t).
(3.4)

Which implies that

d(AX(t)) ≤∥λ1∥d(X(t)) + ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)2p3∥λ3∥∥a2∥p3 (K21) (t)

+ ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)2p2∥λ2∥∥a1∥p2 (K11) (t).

Now, taking into account the assumption (ii), we obtain the following estimate:

d(AX) ≤ ∥λ1∥d(X). (3.5)

Further, let us fix numbers T > 0, ε > 0 arbitrarily, let x ∈ X and take t1, t2 ∈ [0, T] such that
|t2 − t1| ≤ ε. Without loss of generality, we assume that t1 < t2.
Then, in view of our assumptions, we have

|Ax(t2)− Ax(t1)| ≤∥λ1∥|x(t2)− x(t1)|+ | f1(t2, x(t2))− f1(t1, x(t2))|+
+ |F2x(t2)||F3x(t2)− F3x(t1)|+ |F3x(t1)||F2x(t2)− F2x(t1)|

≤∥λ1∥|x(t2)− x(t1)|+ ωT( f1, ε)

+ ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)|F3x(t2)− F3x(t1)|
+ ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)|F2x(t2)− F2x(t1)|,

(3.6)

where ωT( f1, ε) = sup{| f1(t2, x)− f1(t1, x)|, t1, t2 ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0}.
Now, from the assumption (i), we have∣∣∣∣∫ t2

0
u(t2, s, x(s))ds −

∫ t1

0
u(t1, s, x(s))ds

∣∣∣∣ ≤ ∫ t2

0
|u(t2, s, x(s))− u(t1, s, x(s))|ds

+
∫ t2

t1

|u(t1, s, x(s))|ds

≤TωT(u, ε) + |t2 − t1|u
≤TωT(u, ε) + εu,

(3.7)

where,

ωT(u, ε) = sup{|u(t2, s, x)− u(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},
u = sup{|u(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Similarly, from the assumption (i), we obtain∣∣∣∣∫ t2

0
v(t2, s, x(s))ds −

∫ t1

0
v(t1, s, x(s))ds

∣∣∣∣ ≤ TωT(v, ε) + εv, (3.8)
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where,

ωT(v, ε) = sup{|v(t2, s, x)− v(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},

vT = sup{|v(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Hence, from (3.7) and (3.8), we obtain

|F2x(t2)− F2x(t1)| ≤ ωT( f2, ε) + ∥λ2∥(TωT(u, ε) + εu)p2 (3.9)

and

|F3x(t2)− F3x(t1)| ≤ ωT( f3, ε) + ∥λ3∥(TωT(v, ε) + εv)p3 , (3.10)

where,

ωT( f2, ε) = sup{| f2(t2, x)− f2(t1, x)|, t1, t2 ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ ∥K1∥∥a1∥},

ωT( f3, ε) = sup{| f3(t2, x)− f2(t1, x)|, t1, t2 ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ ∥K2∥∥a2∥}.

We deduce, from (3.6), (3.9) and (3.10), that

ωT(Ax, ε) ≤∥λ1∥ωT(x, ε) + ωT( f1, ε)

+
(

f2 + ∥λ2∥∥K1∥p2∥a1∥p2
) (

ωT( f3, ε) + ∥λ3∥(TωT(v, ε) + εv)p3
)

+
(

f3 + ∥λ3∥∥K2∥p3∥a2∥p3
) (

ωT( f2, ε) + ∥λ2∥(TωT(u, ε) + εu)p2
)

.

Since lim
ε−→0

ωT( f2, ε) = lim
ε−→0

ωT( f3, ε) = lim
ε−→0

ωT(u, ε) = lim
ε−→0

ωT(v, ε) = 0, then

ω0(AX) ≤ ∥λ1∥ω0(X). (3.11)

We deduce, from (3.5) and (3.11), that

µ(AX) ≤ ∥λ1∥µ(X).

Hence the third step is completed by taking γ = ∥λ1∥ < 1.
Finally, applying Theorem 3.1, Equation (1.1) has at least one solution x ∈ BC(R+).
Step 4. The solution x is asymptotically stable on R+.
Let ε > 0, and taking r = r0, then, for any other solution y ∈ Br0(R

+), we have from (3.4)

|x(t)− y(t)| ≤∥λ1∥∥x − y∥+ ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)2p3∥λ3∥∥a2∥p3 (K21) (t)

+ ( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)2p2∥λ2∥∥a1∥p2 (K11) (t).

Since ∥λ1∥ < 1, we obtain

|x(t)− y(t)| ≤ ( f2 + ∥λ2∥∥K1∥p2∥a1∥p2)2p3∥λ3∥∥a2∥p3

1 − ∥λ1∥
(K21) (t)

+
( f3 + ∥λ3∥∥K2∥p3∥a2∥p3)2p2∥λ2∥∥a1∥p2

1 − ∥λ1∥
(K11) (t).

By using Assumption (ii), we deduce that there exists T > 0 such that for all t ≥ T

|x(t)− y(t)| ≤ ε.

Which implies that the solution is asymptotically stable on R+.
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4 Example

Consider the following integral equation

x(t) = t exp(−t) + 1 +
1
2

x(t)+ f1

(
t,
∫ t

0

5
(2 + s + t + (x(s))2)2

)
×

f2

(
t,
∫ t

0
es−2t cos(t + x(s))ds

)
,

(4.1)

where t ∈ R+. Set

f1(t, x) = t2 exp(−t) +
1
3

x, f2(t, x) =
1

2 + t
+ 5x, f3(t, x) = 2 sin(t) + 3x, k1(t, s) =

5
(2 + s + t)2

and

k2(t, s) = es−2t, a1(s) = a2 = 1, a2(s) = sin(t).

Using the notations of Theorem 3.4, we can easily show that

λ1 =
1
3

, λ2 = 5, λ3 = 3.

Hence all the assumptions of Theorem 3.4 are satisfied.
Then by Theorem 3.4, we conclude that the integral equation (4.1) has an asymptotically
stable solution x ∈ BC(R+).

5 Conclusions

In this paper, we have considered a general form of the integral equations of product type and
studied the existence of continuous solutions on the real half-line. Moreover, we have studied
the asymptotic stability of the solutions. The existence of solutions has been investigated,
under fairly simple conditions, by using techniques of measures of non-compactness and
Darbo’s fixed point theorem. Finally, an example is provided to illustrate our main result.
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