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Abstract. This paper investigates the nonlinear dynamics and chaos control of a discrete
Rosenzweig-MacArthur predator-prey model. We first conduct a thorough dynamical
analysis, identifying the system’s equilibrium points and examining their stability con-
ditions. The study reveals the occurrence of Flip and Neimark-Sacker bifurcations,
which represent critical qualitative changes in population dynamics. Specifically, Flip
bifurcations lead to period-doubling phenomena, while Neimark-Sacker bifurcations
indicate the emergence of quasi-periodic oscillations, both of which are crucial for un-
derstanding the onset of complex behaviors such as cycles and oscillations in ecological
systems. To address the chaotic dynamics induced by these bifurcations, two control
strategies are applied: the Ott-Grebogi-Yorke (OGY) method and feedback control. The
results demonstrate the effectiveness of both approaches in stabilizing the system’s dy-
namics, with the OGY method proving to be more effective in achieving faster stabiliza-
tion. These findings provide valuable insights into the management and preservation
of ecological systems where predator-prey interactions exhibit instability and chaos.

Keywords: Prey-predator model, Rosenzweig-MacArthur model, stability, bifurcations,
chaos control.
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1 Introduction

The analysis of dynamical systems plays a fundamental role in understanding and predict-
ing complex phenomena across a wide range of real-world applications, including ecology,
biology, engineering, and economics. Stability analysis, bifurcation theory, mixed-mode os-
cillations, chaos control, and synchronization are key tools used to investigate the qualitative
behavior of such systems and their responses to parameter variations and external influences.
These concepts have been widely applied to study periodic solutions and their stability in dif-
ferential systems [9], bifurcation and chaos in electrical circuit [2,9], synchronization phenom-
ena in chaotic systems [15], and Hopf bifurcation leading to oscillatory behavior in biological
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and economic models [1, 22]. Moreover, the investigation of nonlinear dynamics and chaotic
behaviors in economic games [3,5,6,20], as well as synchronization and control in electrical cir-
cuits and memristor-based systems [11,12], has provided valuable insights for both theoretical
analysis and practical applications. Recent studies have emphasized the development of effi-
cient control strategies to suppress or stabilize chaos in various systems [?, 17], and explored
the complex dynamics of piecewise linear maps and higher-order difference equations [?, 10].
These methodologies not only enhance the understanding of underlying mechanisms govern-
ing complex systems but also contribute to the design of robust control schemes to ensure
desired performance and stability in real-life scenarios.

The Rosenzweig-MacArthur model remains a cornerstone in ecological modeling, offering
a robust framework to analyze predator-prey interactions and their implications on population
stability and complex dynamical behaviors. Its significance stems from its ability to incorpo-
rate both biotic and abiotic factors, providing insights into species coexistence and persistence
under varying environmental conditions [21, 24]. Central to this model is the Holling type II
functional response, capturing the nonlinear relationship between prey availability and preda-
tor consumption, thus reflecting realistic ecological saturation effects [16, 18].

Beyond classical predator-prey interactions, ecological systems are well-known for exhibit-
ing rich nonlinear behaviors, including oscillations, periodic cycles, bifurcations, and chaotic
dynamics [19]. These phenomena are highly sensitive to initial conditions and parameter vari-
ations, often leading to qualitative shifts in system behavior through bifurcations such as Flip
and Neimark-Sacker types [7, 25]. Understanding these bifurcations is crucial for predicting
ecological stability and designing effective management and conservation strategies.

Recent research emphasizes the utility of discrete-time formulations of ecological models,
such as the Rosenzweig-MacArthur model, to capture time-delayed interactions, seasonal ef-
fects, and inherent discretization in data collection [3,14]. The discrete approach facilitates the
exploration of dynamical behaviors that may remain hidden in continuous models, enabling
rigorous analysis of complex bifurcation structures and chaotic regimes.

Motivated by these advancements, this study investigates the bifurcation phenomena and
chaotic dynamics in the discrete Rosenzweig-MacArthur model and explores effective strate-
gies for chaos control. Specifically, we apply two well-established methods: the OGY method,
which utilizes small parameter perturbations to stabilize unstable periodic orbits embedded
within chaotic attractors [3, 7], and feedback control, which introduces corrective forces to
maintain system stability [4].

The remainder of this paper is structured as follows: Section 2 presents the mathematical
formulation of the discrete Rosenzweig-MacArthur model. Section 3 provides the dynamical
analysis, focusing on equilibrium points and their stability conditions. Section 4 investigates
bifurcation phenomena using both theoretical and numerical approaches. Section 5 discusses
the application and comparative effectiveness of chaos control techniques, including the OGY
and feedback methods. Finally, Section 6 concludes with key findings and implications for
ecological management and future research directions.

2 Model formulation

The Rosenzweig-MacArthur prey-predator model is a well-established framework for study-
ing population dynamics. This section formulates the model in both continuous and discrete
time, emphasizing the mathematical derivation of its discrete-time version.
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2.1 Continuous-time model

The continuous-time Rosenzweig-MacArthur model is defined by the following system of
differential equations [16, 18, 24]:

dx
dt

= rx
(

1 − x
K

)
− h(x)y,

dy
dt

= −my + ch(x)y,
(2.1)

where:

• x(t): Prey population at time t,

• y(t): Predator population at time t,

• r: Intrinsic growth rate of prey,

• K: Carrying capacity of the prey population,

• m: Mortality rate of the predator,

• c: Conversion efficiency of prey biomass into predator biomass,

• h(x): Functional response rate of predators to prey, given by the Holling Type II response
[21]:

h(x) =
bx

1 + bτx
, (2.2)

where b is the predation rate coefficient and τ is the handling time of prey.

The term rx
(
1 − x

K

)
represents logistic growth of prey, while h(x)y accounts for preda-

tion. The term −my captures predator mortality, and ch(x)y represents predator reproduction
proportional to prey consumption.

2.2 Discrete-time model

To study population dynamics over successive generations or time steps, we derive a discrete-
time version of the model using the forward Euler method [7]. The Euler approximation of
(2.1) with a time step ∆t = h is given by:

xt+1 = xt + h
[

rxt

(
1 − xt

K

)
− bxtyt

xt + H

]
,

yt+1 = yt + h
[

yt

(
−m +

cxt

xt + H

)]
.

(2.3)

Here, H = 1
sτ is the Half-saturation constant of the functional response,

The discrete formulation captures nonlinear and time-delayed interactions, facilitating the
analysis of complex behaviors like bifurcations and chaos [7, 16].

3 Dynamical analysis

This section provides a rigorous examination of the discrete Rosenzweig-MacArthur prey-
predator model, focusing on equilibrium points, their stability, and bifurcations. The results
are presented as lemmas, propositions, and theorems, accompanied by detailed proofs.
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3.1 Equilibrium points and stability analysis

Lemma 3.1 (Equilibrium Points). The system admits the following equilibrium points:
For all b, c, m, r, H, h, K the discrete system (2.3) admits a trivial equilibrium P1 = (0, 0), repre-

senting extinction of both prey and predator populations, and a semi-trivial equilibrium P2 = (K, 0),
where the prey population exists at carrying capacity K, while the predator population is extinct.

A coexistence equilibrium P3 = (x∗, y∗), for c > max
{

m, mH+K
K

}
where:

x∗ =
Hm

c − m
, y∗ =

cHr(K(c − m)− Hm)

bK(c − m)2 .

Proof. To find equilibrium points, solve xt+1 = xt and yt+1 = yt:

x = x
(

1 + hr − hr
K

x − hbxy
x + H

)
, y = y

(
1 − hm +

chx
x + H

)
.

From the first equation, x = 0 or:

hr − hr
K

x − hby
x + H

= 0.

Similarly, from the second equation, y = 0 or:

−hm +
chx

x + H
= 0.

By substituting y = 0 in the first equation, we find x = K, giving the semi-trivial equilibrium
P2 = (K, 0). For the coexistence equilibrium P3, solve the equations:

hr − hr
K

x − hby
x + H

= 0, −hm +
chx

x + H
= 0,

which yield:

x∗ =
Hm

c − m
, y∗ =

cHr(K(c − m)− Hm)

bK(c − m)2 .

The condition c > max
{

m, mH+K
K

}
ensures positivity of x∗ and y∗. □

Proposition 3.2 (Stability of the fixed point P1). For the discrete-time model (2.3), the stability
characteristics of the fixed point P1 = (0, 0) are as follows:

(i) P1 can never be a sink.

(ii) P1 will be a source when m > 2
h .

(iii) P1 is a saddle for 0 < m < 2
h .

(iv) P1 becomes non-hyperbolic when m = 2
h .

Proof. The stability of a fixed point is determined by the eigenvalues of the Jacobian matrix
evaluated at that point. For the discrete-time model (2.3), the Jacobian matrix is expressed at
P1 as:

J|P1 =

(
1 + hr 0

0 1 − hm

)
.
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The eigenvalues are:
λ1 = 1 + hr, λ2 = 1 − hm.

Since r > 0 in the context of this model, λ1 is always greater than 1, and P1 cannot behave
as a sink.

|λ2| < 1 implies − 1 < 1 − hm < 1 then 0 < m <
2
h

.

Interpretation:

• If m > 2
h , λ2 > 1, causing P1 to act as a source.

• If 0 < m < 2
h , λ1 > 1 and λ2 < 1, making P1 a saddle.

• If m = 2
h , λ2 = −1, resulting in P1 being non-hyperbolic.

□

Proposition 3.3 (Stability of the fixed point P2). For the discrete-time model (2.3), the stability
characteristics of the fixed point P2 = (K, 0) are as follows:

(i) P2 is a sink if −2H+hmH
2−hm+ch < K < hmH

cH−hm and 0 < r < 2
h .

(ii) P2 is a source if K < −2H+hmH
2−hm+ch and r > 2

h .

(iii) P2 is a saddle if K < −2H+hmH
2−hm+ch and 0 < r < 2

h .

(iv) P2 is non-hyperbolic if K = −2H+hmH
2−hm+ch or r = 2

h .

Proof. At P2 = (K, 0), the Jacobian matrix becomes:

J|P2 =

1 − hr
−bhK
K + h

0 1 − hm + chK
H+K

 .

The eigenvalues are:

λ1 = 1 − hr, λ2 = 1 − hm +
chK

H + K
.

Stability Conditions:

|λ1| < 1 implies that − 1 < 1 − hr < 1 then, r <
2
h

.

|λ2| < 1 implies that − 1 < 1 − hm +
chK

H + K
< 1.

Splitting the inequality:

1 − hm +
chK

H + K
> −1 implies that

chK
H + K

> −2 + hm,

and:
1 − hm +

chK
H + K

< 1 implies that
chK

H + K
< 2 − hm.

Combining these conditions:

−2H + hmH
2 − hm + ch

< K <
hmH

cH − hm
.

Interpretation:
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• If −2H+hmH
2−hm+ch < K < hmH

cH−hm and r < 2
h , P2 is a sink.

• If K < −2H+hmH
2−hm+ch and r > 2

h , P2 acts as a source.

• If K < −2H+hmH
2−hm+ch and r < 2

h , P2 is a saddle.

• If K = −2H+hmH
2−hm+ch or r = 2

h , P2 is non-hyperbolic.

□

Proposition 3.4 (Stability of the fixed point P3). For the fixed point P3 of model (2.3), the stability
depends on the sign of the discriminant ∆ of the Jacobian’s characteristic equation and the parameter
K. The results are as follows:

• Case 1: ∆ < 0

(i) P3 is a stable focus if 0 < K < H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

, provided c > max
{

m, hm−1
h , hm2−m

hm+1

}
.

(ii) P3 is an unstable focus if K > H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

.

(iii) P3 is non-hyperbolic if K = H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

.

• Case 2: ∆ > 0

(i) P3 is a stable node if:

mH
c − m

< K <
hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
,

with c < min
{

h2m2r−2hmr
4+h2mr , hm2−2m

mh+2

}
and c > m.

(ii) P3 is an unstable node if:

hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
< K <

mH
c − m

.

(iii) P3 is non-hyperbolic if:

K =
mH

c − m
or K =

hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
.

Proof. The stability of the fixed point P3 is determined by the eigenvalues of the Jacobian
matrix. The eigenvalues are roots of the characteristic equation:

λ2 − Tr(J)λ + det(J) = 0,

where the trace and determinant of the Jacobian are given by:

Tr(J) = 2 − hmr
c(H − K) + m(H + K)

cK(c − m)
,

det(J) = 1 − hmr
c(H − K) + m(H + K)

cK(c − m)
+ h2mr

cK − m(H + K)
cK

.
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The discriminant of the characteristic equation is:

∆ = Tr(J)2 − 4 det(J).

—
When ∆ < 0, the eigenvalues are complex conjugates, and the fixed point behaves as a

focus. The stability depends on the real part of the eigenvalues, given by Tr(J)
2 . Substituting

the expression for Tr(J), the fixed point is:

• A stable focus if Tr(J) < 0, which occurs when 0 < K < H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

, provided

c > max
{

m, hm−1
h , hm2−m

hm+1

}
.

• An unstable focus if Tr(J) > 0, which occurs when K > H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

.

• Non-hyperbolic if Tr(J) = 0, which occurs when K = H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

.

—
When ∆ > 0, the eigenvalues are real and distinct, and the fixed point behaves as a node.

The stability depends on the signs of the eigenvalues:

• A stable node if both eigenvalues are negative, which occurs when:

mH
c − m

< K <
hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
,

with c < min
{

h2m2r−2hmr
4+h2mr , hm2−2m

mh+2

}
and c > m.

• An unstable node if at least one eigenvalue is positive, which occurs when:

hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
< K <

mH
c − m

.

• Non-hyperbolic if one eigenvalue is zero, which occurs when:

K =
mH

c − m
or K =

hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)
.

□

3.2 Bifurcation analysis

Bifurcations represent parameter values at which the system’s qualitative dynamics change,
leading to complex behaviors like periodicity or chaos.

Thus, bifurcation analysis is crucial for understanding how environmental factors and
inter-species interactions drive ecosystem stability or instability.
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Bifurcation at P1:

When the non-hyperbolic condition m = 2
h is fulfilled the Jacobian matrix at P1 has λ2|m= 2

h
=

−1 but λ1|m= 2
h
= 1 + hr , ±1. This implies that at P1 the under study model (2.3) may

undergoes a flip bifurcation when (b, c, m, r, H, h, K) passes through the region:

F|P1 =

{
(b, c, K, m, r, H, h) ∈ R∗

+
7/m =

2
h

}
.

Theorem 3.5. The model (2.3) undergoes a flip bifurcation at P1 when (b, c, m, r, H, h, K) passes
through the region:

F|P1 =

{
(b, c, K, m, r, H, h) ∈ R∗

+
7/m =

2
h

}
.

Proof. To analyze the bifurcation at P1 when m = 2
h we use the predator update function:

g(x, y, m) = y + hy
(
−m +

cx
x + H

)
.

We check the flip conditions at the first fixed point P1, when m = 2
h :

• ∂g
∂y (x, y, m) = 1 + h(−m + cx

x+H ). Thus, ∂g
∂y (x, y, m) |(P1, 2

h )
= −1.

• α = ∂2g
∂m∂y (x, y, m) + 1

2
∂g
∂m (x, y, m) ∂2g

∂y2 (x, y, m) |(P1, 2
h )
= −h , 0.

• β = 1
3!

∂3g
∂y3 (x, y, m) + 1

2!

(
∂g
∂y (x, y, m)

)2
|(P1, 2

h )
= 1

2 , 0.

So we have a flip bifurcation through P1 if (b, c, K, m, r, H, h) ∈ F|P1 . □

Bifurcation at P2

The bifurcation analysis at the fixed point P2 focuses on the conditions under which the system
undergoes a flip bifurcation. The eigenvalues of the Jacobian matrix at P2 determine the
presence or absence of this bifurcation.

Case 1: r = 2
h and hm , chK

H+K When r = 2
h and hm , chK

H+K , we have:

λ1|r= 2
h
= −1, λ2|r= 2

h
= 1 − hm +

chK
H + K

, ±1.

This implies that if the parameter set (b, c, K, m, r, H, h) lies on the region:

F1|P2 =

{
(b, c, K, m, r, H, h) ∈ R∗

+
7∣∣r = 2

h
, hm ,

chK
H + K

}
,

the model (2.3) may undergo a flip bifurcation at P2.

Theorem 3.6 ( [8]). If (b, c, K, m, r, H, h) ∈ F1|P2 , then a flip bifurcation occurs at P2.

Proof. To verify the flip bifurcation conditions at P2 when r = 2
h , we use the prey update

function:

f (x, y, r) = x + hrx − hrx2

K
− hbxy

x + H
.
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we have
∂ f
∂x

(x, y, r) = 1 + hr − 2
hr
K

x − hbHy
(x + H)2 .

At (P2, r = 2
h ), we find:

∂ f
∂x
∣∣
(P2,r= 2

h )
= −1.

On the other hand we have

α =
∂2 f
∂r∂x

+
1
2

∂ f
∂r

∂2 f
∂x2

∣∣
(P2,r= 2

h )
.

Then
α = −h , 0.

Finally we have

β =
1
3!

∂3 f
∂x3 +

1
2

(
∂ f
∂x

)2 ∣∣
(P2,r= 2

h )
.

At (P2, r = 2
h ):

β =
1
2
, 0.

Since α , 0 and β , 0, the non-degeneracy conditions for a flip bifurcation are satisfied.
Therefore, a flip bifurcation occurs at P2 when (b, c, K, m, r, H, h) ∈ F1|P2 . □

Case 2: K = −2H+hmH
2−hm+ch When K = −2H+hmH

2−hm+ch , the eigenvalues are:

λ1|K=−2H+hmH
2−hm+ch

= 1 − hr , ±1, λ2|K=−2H+hmH
2−hm+ch

= −1.

This implies that if the parameter set (b, c, m, r, H, h, K) lies on the region

F2|P2 =

{
(b, c, K, m, r, H, h) ∈ R∗

+
7∣∣K =

−2H + hmH
2 − hm + ch

}
,

the model (2.3) may undergo a flip bifurcation at P2.

Theorem 3.7 ( [8]). If (b, c, K, m, r, H, h) ∈ F2|P2 , flip bifurcation occurs at P2.

Proof. To verify the bifurcation conditions at P2 when K = −2H+hmH
2−hm+ch , we calculate the deriva-

tives of the prey update function:

f (x, y, K) = x + hrx − hrx2

K
− hbxy

x + H
.

The first derivative of f (x, y, K) with respect to x is:

∂ f
∂x

(x, y, K) = 1 + hr − 2
hr
K

x − hbHy
(x + H)2 .

At P2 = (K, 0), substituting y = 0, we find:

∂ f
∂x
∣∣
K=−2H+hmH

2−hm+ch
= 1 + hr − 2

hr
K

K = −1.
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The second derivative with respect to x is:

∂2 f
∂x2 (x, y, K) = −2

hr
K

+
2hbHy
(x + H)3 .

At P2 = (K, 0), where y = 0, this simplifies to:

∂2 f
∂x2

∣∣
K=−2H+hmH

2−hm+ch
= −2

hr
K

.

The mixed second derivative with respect to K and x is:

∂2 f
∂K∂x

(x, y, K) =
hrx2

K2 .

At P2 = (K, 0), substituting x = K, this becomes:

∂2 f
∂K∂x

∣∣
K=−2H+hmH

2−hm+ch
=

hr
K

.

The coefficient α is:

α =
∂2 f

∂K∂x
+

1
2

∂2 f
∂x2

∂ f
∂K

.

The partial derivative with respect to K is:

∂ f
∂K

=
hrx2

K2 .

At P2 = (K, 0), substituting x = K, this becomes:

∂ f
∂K
∣∣
K=−2H+hmH

2−hm+ch
=

hr
K

.

Substituting, we find:

α =
hr
K

+
1
2

(
−2

hr
K

)(
hr
K

)
=

hr
K

− hr2

K
=

hr(1 − r)
K

.

Since hr > 0, α , 0.
The third derivative with respect to x is:

∂3 f
∂x3 (x, y, K) =

6hbHy
(x + H)4 .

At P2 = (K, 0), where y = 0, this reduces to:

∂3 f
∂x3

∣∣
K=−2H+hmH

2−hm+ch
= 0.

The coefficient β is:

β =
1
3!

∂3 f
∂x3 +

1
2

(
∂ f
∂x

)2

.

Substituting ∂3 f
∂x3 = 0 and ∂ f

∂x = −1:

β =
1
3!
(0) +

1
2
(−1)2 =

1
2
, 0.

Since ∂ f
∂x

∣∣
K=−2H+hmH

2−hm+ch
= −1, α , 0 and β , 0, the bifurcation conditions for a flip bifurcation

are satisfied at K = −2H+hmH
2−hm+ch . □
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Bifurcation at P3

• When the bifurcation parameter K satisfies:

K =
H(hcm + c + m − hm2)

(c − m)(1 + ch − hm)
,

the fixed point P3 becomes non-hyperbolic, as the eigenvalues of the Jacobian matrix
satisfy:

|λ1,2|K= H(hcm+c+m−hm2)
(c−m)(1+ch−hm)

= 1.

This suggests that the system may undergo a Neimark-Sacker bifurcation through P3.

Theorem 3.8 (Neimark-Sacker bifurcation through P3).
The discrete model (2.3) undergoes a Neimark-Sacker bifurcation through the fixed point P3, with
K as the bifurcation parameter at the critical region

N|P3 =

{
(b, c, m, r, H, h, K) ∈ R7

+

/
K =

H(hcm + c + m − hm2)

(c − m)(1 + ch − hm)

}
,

then

Proof. To analyze the Neimark-Sacker bifurcation through P3, let K = K∗ + ϵ, where
ϵ ≪ 1 is a small perturbation around the critical bifurcation value K∗. Substituting K
into the discrete model:

xt+1 = xt + hrxt −
hrx2

t
K∗ + ϵ

− hbxtyt

xt + H
,

yt+1 = yt + hyt

(
−m +

cxt

xt + H

)
.

The Jacobian matrix at the fixed point P3 is given by:

J|P3 =

[
1 + hr − 2hrx∗

K∗+ϵ −
hbHy∗

(x∗+H)2 − hbx∗
x∗+H

hcHy∗

(x∗+H)2 1 − hm + chx∗
x∗+H

]
.

The eigenvalues λ1,2 of J|P3 satisfy the characteristic equation:

λ2 − Tλ + D = 0, T = tr(J|P3), D = det(J|P3).

Expanding T and D in terms of ϵ, we have:

T(ϵ) = T0 + T1ϵ +O(ϵ2), D(ϵ) = D0 + D1ϵ +O(ϵ2),

where T0 and D0 are evaluated at K = K∗.

The eigenvalues λ1,2 are expressed as:

λ1,2(ϵ) =
T(ϵ)± i

√
4D(ϵ)− T(ϵ)2

2
.

Step 1: Non-Hyperbolic Condition At the bifurcation value K = K∗, the eigenvalues
satisfy:

|λ1,2| = 1.
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This implies that P3 is non-hyperbolic. For this to occur, the trace T and determinant D
must satisfy:

T2 − 4D = 0.

Step 2: Derivative of the Eigenvalue Modulus To confirm the Neimark-Sacker bifurca-
tion, we calculate the derivative of the eigenvalue modulus |λ| with respect to K. Using
the characteristic equation, the eigenvalues are:

λ1,2 =
T ± i

√
4D − T2

2
.

The modulus of the eigenvalues is:

|λ| =
√

D.

Differentiating with respect to K:

d|λ|
dK

=
1

2|λ|
dD
dK

.

From the explicit expressions for T and D, the derivative dD
dK is:

dD
dK

=
hmr(c − m)(1 + ch − hm)2

2cH(c + m + chm − hm2)
.

Step 3: Transversality Condition The transversality condition for a Neimark-Sacker bi-
furcation requires:

d|λ|
dK
, 0.

Substituting the derivative of D, we confirm that:

hmr(c − m)(1 + ch − hm)2

2cH(c + m + chm − hm2)
, 0,

for all (b, c, m, r, H, h, K) ∈ N|P3 .

For a Neimark-Sacker bifurcation to occur, the following conditions must hold: 1. The
modulus of the eigenvalues is equal to 1 at K = K∗:

|λ1,2(0)| =
√

D0 = 1.

2. The real part of d|λ|/dϵ at ϵ = 0 is non-zero:

d|λ|
dϵ

∣∣∣∣
ϵ=0

=
hmr(c − m)(1 + ch − hm)2

2cH(c + m + chm − hm2)
, 0.

Since both conditions are satisfied under the given parameter set (b, c, m, r, H, h, K) ∈
N|P3 , the fixed point P3 undergoes a Neimark-Sacker bifurcation. □

• If K = mH
c−m (non-hyperbolic condition), we have: λ1 |K= mH

c−m
= 1 but λ2 |K= mH

c−m
= 1 − hr ,

±1. This implies that if (b, c, m, r, H, h, K) passes through the following curve then at P3

there may exists fold bifurcation:

F3 |P3=

{
(b, c, m, r, H, h, K) ∈ R∗

+
7/K =

mH
c − m

}
.
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Theorem 3.9.
If (b, c, K, m, r, H, h) ∈ F|P3

, then the discrete model described in (2.3) cannot undergo a fold
bifurcation at P3.

• If K = hHmr(−2c−2m−hmc+hm2)
(h2m2r−4c−h2mrc−2hmr)(c−m)

λ1 |
K= hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m)

= −1,

λ2 |
K= hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m)

= c(−2+hm(−3+hr))−m(2+hm(−3+hr))
m(−2+hm)−c(2+hm)

, ±1 This implies that if

(b, c, m, r, H, h, K) passes through the following curve then system(2.3) may undergoes a
Flip bifurcation at P3:

F4 |P3=

{
(b, c, m, r, H, h, K) ∈ R∗

+
7/K =

hHmr(−2c − 2m − hmc + hm2)

(h2m2r − 4c − h2mrc − 2hmr)(c − m)

}
.

Theorem 3.10. [8]
If (b, c, m, r, H, h, K) ∈ F4 |P3 , then the discrete model described in (2.3) undergoes a flip bifurca-
tion at P3.

Example 3.11.
Consider the set of parameter values:

b = 0.9, c = 3.5, H = 0.7, m = 0.7, r = 2.8, h = 1 (3.1)

With K ∈ [0.1, 0.55] as a bifurcation parameter and starting from the initial conditions (x0, y0) =

(0.1760, 0.5259). The Lyapunov exponent and the bifurcation diagrams are drawn versus K in
figure (3.1a). The discrete model (2.3) has an equilibrium solution P3 = (0.1750, 0.5249) and
the Jacobian matrix is :

Jc |P3=

(
−1.1522 −0.1800
1.6795 1

)
.

With the eigenvalues λ1 = −1 and λ2 = 0.8489 , ±1 and hence based on these simulations
one can obtain that (b, c, H, m, r, h, K) = (0.9, 3.5, 0.7, 0.7, 2.8, 1, 0.2168) ∈ F3 |P3 .

β11 = −1.1522,
β12 = −0.1800,
β13 = −12.4215,
β14 = −0.8229,
δ01 = 20.8501,
δ02 = 59.5716,
β21 = 1.6795,
β22 = 1,
β23 = −1.9195,
β24 = 3.2.

(3.2)


C0 = C3 = 0,
C1 = 0.8055,
C2 = −11.2991.

(3.3)

And: 

h1 = −15.3803,
h2 = 23.8379,
h3 = −163.5835,
h4 = −269.3474,
h5 = −144.6623.

(3.4)
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Substituting (3.4) one gets: Γ1 = 23.8379 , 0, Γ2 = 91.8928 > 0. Since Γ2 = 91.8928 > 0 and so
it can be concluded that stable period-2 points bifurcate from P3 = (0.175, 0.5249).
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(a) Evolution of the Lyapunov exponents
with respect to K, illustrating transitions
between regular and chaotic dynamics.
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(b) Variation of eigenvalues (λ1, λ2)
and discriminant ∆ of the Jaco-
bian matrix at the fixed point P3 =
(0.175, 0.5249) with respect to K, in-
dicating stability changes and po-
tential bifurcations.

(c) Bifurcation diagram for the prey population xt, demonstrating the
system’s long-term behavior and highlighting different transition sce-
narios leading to chaos.

Figure 3.1: Dynamical behavior of the discrete Rosenzweig-MacArthur model (2.3) at the
fixed point P3 = (0.175, 0.5249) as a function of the carrying capacity K ∈ [0.1, 0.55], using the
parameter set (3.1).

3.3 Coexistence of attractors

In this section, we explain the chaotic coexistence in the Rosenzweig-MacArthur system. Table
3.1 illustrates the cases of changes in attractors and Lyapunov exponents with the evolution
of K.

In the diagram, we observe the coexistence of different attractors for several values of k,
such as k=0.2171 and k=0.47, with different initial conditions.
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Attractors K λ1,2

Chaotic [0.164, 0.2169] λ1 > 0 and λ2 < 0
Quasi-periodic 0.217 λ1 = 0 and λ2 < 0

Periodic [0.217, 0.399] λ1 < 0 and λ2 < 0
chaotic [0.3992, 0.437] λ1 > 0 and λ2 < 0

Quasi-periodic 0.438 λ1 = 0 and λ2 < 0
periodic [0.438, 0.442] λ1 < 0 and λ2 < 0

Quasi-periodic 0.457 λ1 = 0 and λ2 < 0
Periodic [0.457, 0.477] λ1 < 0 and λ2 < 0
Chaotic [0.477, 0.538] λ1 > 0 and λ2 < 0

Hyper-chaotic [0.538, 0.5816] λ1 > 0 and λ2 > 0

Table 3.1: The Lyapunov exponents and the type of attractors of the system with the first set
of parameters (3.1) at P3 = (0.175, 0.5249)

• If k=0.2171 with three initial conditions for (x1, y1) = (0.1749, 0.5278) we have a chaotic
attractor, for (x2, y2) = (0.2505, 0.1405) we have(periodic points), for (x3, y3) = (0.1931, 0)
(invariant curve), where we observe two periodic points, corresponding to two Lya-
punov exponent values, both of which are negative (periodic attractor), (see figure
3.3a,3.3b)

• If k=0.47 with three initial conditions for (x1, y1) = (0.1831, 0.9633) we have a periodic
points , for (x2, y2) = (0.1750, 1.4346) we have (periodic points), for (x3, y3) = (0.5886, 0)
(invariant curve), where observe seven periodic points,corresponding to two Lyapunov
exponent values, both of which are negative (periodic attractor), (see figure 3.4a,3.4b)
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(a) Bifurcation diagram for prey pop-
ulation xt with three initial condi-
tions: (x1, y1) = (0.1749, 0.5278): Near-
equilibrium initial state (x2, y2) =
(0.2505, 0.1405): Perturbed prey-predator
state (x3, y3) = (0.1931, 0): Prey-only ini-
tial state.

(b) Bifurcation diagram for predator
population yt with three initial con-
ditions: (x1, y1) = (0.1831, 0.9633):
High predator density state (x2, y2) =
(0.1750, 1.4346): Extreme predator den-
sity state (x3, y3) = (0.5886, 0): Prey-only
initial state.

Figure 3.2: Bifurcation diagrams illustrating the coexistence of multiple attractors in the dis-
crete Rosenzweig-MacArthur predator-prey model at the fixed point P3 = (0.175, 0.5249), as a
function of the carrying capacity K.

(a) Phase portrait demonstrating the co-
existence of a chaotic attractor (blue)
and period-2 points (red) for the pa-
rameter set (3.1). Initial conditions:
(0.2505, 0.1405) for the chaotic attrac-
tor and (0.1749, 0.5278) for the period-2
points. The x-axis represents prey popu-
lation, and the y-axis represents predator
population
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(b) Time evolution of prey population x
for the periodic points, illustrating the al-
ternating pattern characteristic of period-
2 behavior. The x-axis shows time steps,
and the y-axis shows prey population
size.

Figure 3.3: Coexistence of multiple attractors in the discrete Rosenzweig-MacArthur predator-
prey model at P3 = (0.175, 0.5249) with carrying capacity k = 0.2171.

4 Chaos control

This section analyzes chaos control in the Rosenzweig-MacArthur system using two ap-
proaches: the OGY method and the feedback control method, with full numerical illustrations.
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(a) Phase portrait illustrating the coexistence
of a chaotic attractor (blue) and period-
2 points (red) for the parameter set (3.1).
Initial conditions: (0.1750, 1.4346) for the
chaotic attractor and (0.1831, 0.9633) for the
period-7 points. The x-axis represents prey
population, and the y-axis represents preda-
tor population.
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(b) Time evolution of prey population x for
the periodic points, exhibiting a clear alter-
nating pattern characteristic of period-7 be-
havior. The x-axis shows time steps, and the
y-axis shows prey population size.

Figure 3.4: Coexistence of multiple attractors in the discrete Rosenzweig-MacArthur predator-
prey model at P3 = (0.175, 0.5249) with carrying capacity k = 0.47.

4.1 OGY method

The OGY method stabilizes chaotic trajectories via small parameter perturbations near an
unstable fixed point. Consider the discrete system together with its linearization:

Xn+1 = F(Xn, p) ≃ AXn + B, (4.1)

where Xn is the state vector, p is the control parameter, A the Jacobian matrix, and B the
control matrix. The system is controllable if the controllability matrix

P = [B, AB]

has full rank.
For the discrete model (2.3), we obtain:

A =

(
1 + hr − 2hrxF

K − bhxF
xF+H

cHhyF
(xF+H)2 1 − hm + chxF

xF+H

)
, BK =

(
hrx2

F
K2

0

)
.

The determinant of the controllability matrix is:

det(PK) =
h3r3m2H2(K(c − m)− Hm)

bK∗K3(c − m)2 , 0,

ensuring controllability when K , mH
c−m , c , m.

At equilibrium P3 = (0.1750, 0.5249), the Jacobian matrix is:

A =

(
−1.1522 −0.1800
1.6795 1

)
, B =

(
1.8243

0

)
.
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The eigenvalues are λu = −1.0011 and λs = 0.8489, confirming that P3 is a hyperbolic
saddle. The corresponding right eigenvectors are:

vu =

(
−0.7660
0.6429

)
, vs =

(
0.0896
−0.9960

)
,

and left eigenvectors:

fu =

(
−0.9960
−0.0896

)
, fs =

(
−0.6429
−0.7660

)
.

Figure 4.1 illustrates that activating OGY control at t = 100 with a small perturbation
(order 10−4) in K stabilizes the system rapidly by t = 101.
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Figure 4.1: System response under OGY control with parameters (3.1), at the equilibrium
P3 = (0.175, 0.5249), control gain k = 0.2168, and initial condition (0.1760, 0.5259).
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4.2 Feedback control method

In feedback control, a control force is introduced:

Ut = −k1(xt − x)− k2(yt − y),

leading to the controlled system:{
xt+1 = (1 + hr)xt − hr

K x2
t − hb

xt+H xtyt − k1(xt − x)− k2(yt − y),

yt+1 = (1 − hm)yt +
hc

xt+H xtyt,
(4.2)

where x = mH
c−m , y = cHr(cK−Hm−Km)

bK(c−m)2 .
The Jacobian at equilibrium P3 is:

Jc|P3 =

(
ℓ11 − k1 ℓ12 − k2

ℓ21 ℓ22

)
,

where

ℓ11 = 1− hmr(c(H − K) + m(H + K))
cK(c − m)

, ℓ12 = −bhm
c

, ℓ21 =
hr(K(c − m)− Hm)

bK
, ℓ22 = 1.

The stability conditions yield the following linear equations:

L1 : 0.5954k1 − k2 + 1.2814 = 0, (4.3)

L2 : k2 − 0.00002545 = 0, (4.4)

L3 : 1.1908k1 − k2 + 0.0012 = 0. (4.5)

These define a triangular stability region in the (k1, k2) gain parameter plane, where
|λ1,2| < 1 (see Figure 4.2). For k1 = 0.02, k2 = 0.24, the controlled system’s trajectories
stabilize, as shown in Figures 4.3a-4.3d.

Figure 4.2: Stability region in the control gain parameters plan (k1, k2), for the controlled
discrete Rosenzweig-MacArthur predator-prey model at the fixed point P3 = (0.175, 0.5249)
for the parameter values set (3.1).

Remark 4.1. Under identical parameter settings, the OGY method stabilizes the system within
approximately one time unit, while feedback control requires about 25 time units, demonstrat-
ing the superior efficiency of the OGY approach in regulating chaotic dynamics.
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(a) Time evolution of the prey population
xt under the feedback control scheme.
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(b) Time evolution of the predator popu-
lation yt under the same feedback control
parameters.
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is able to stabilize the system to the fixed
point P3 = (0.175, 0.5249).
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(d) Time evolution of the control inputs
uxt and uyt applied to the prey and
predator populations, respectively, to sta-
bilize the system to the fixed point P3 =
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Figure 4.3: Stabilization of the controlled discrete Rosenzweig-MacArthur predator-prey
model (4.2) at the fixed point P3 = (0.175, 0.5249) for the parameter values set (3.1) via the
feedback control scheme under control gains k1 = 0.02, k2 = 0.24, and initial conditions
(0.176, 0.5259).

5 Conclusion

In this study, we identified a flip bifurcation occurring at k = 0.2168 within the Rosenzweig-
MacArthur predator-prey model, indicating a pivotal shift in the system’s dynamics.

Our findings underscore the models strong sensitivity to initial conditions, where even
slight changes in starting values lead to significantly different long-term dynamics, such as
convergence to a chaotic attractor, emergence of periodic cycles, or formation of invariant
curves. This behavior confirms the presence of multiple coexisting attractors and the complex
nature of the system.

To suppress chaotic dynamics, we explored two control approaches: the OGY method
and a standard feedback control mechanism. The analysis showed that the OGY method
outperformed feedback control in stabilizing the system and promoting regular dynamics.

Overall, this research contributes to a deeper understanding of nonlinear dynamics in
ecological systems and illustrates the effectiveness of chaos control techniques in managing
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unpredictable behaviors in predator-prey interactions.
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