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Abstract. Mathematical modeling serves as a vital tool in public health, enabling policy-
makers to synthesize evidence, forecast disease trends, and assess intervention strate-
gies. This study investigated the combined effects of face masks, quarantine, social
distancing, and vaccination in controlling infectious respiratory diseases. The repro-
duction number was derived using the next-generation matrix (NGM). Local stability
analysis utilized the Gershgorin Circle Theorem, while global stability was analyzed
through the Quadratic Lyapunov Theorem. Sensitivity analysis was conducted using
the normalized forward sensitivity index, and numerical simulations were performed
with Python libraries such as scipy, numpy, and matplotlib.pyplot. Bifurcation analy-
sis was carried out using the Center Manifold Theorem. The findings revealed that
while these measures effectively reduced infection spread, they were insufficient to
completely eliminate disease transmission. This study underscores the importance of
implementing multiple strategies concurrently to effectively control the transmission of
infectious diseases and guide public health interventions.
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1 Introduction

Mathematical modelling has proven to be a valuable tool for policymakers, helping them syn-
thesize evidence, forecast outcomes, plan interventions, and evaluate decisions. According
to [15], these models are essential for proactively preventing, predicting, and mitigating dis-
ease transmission. As [23] highlights, the primary goals in controlling respiratory infectious
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diseases are to reduce infection rates and manage the strain on healthcare systems and per-
sonnel. Researchers have proposed various mathematical models to analyze the dynamics of
infectious respiratory diseases, aiding in predicting outbreaks and exploring control strate-
gies. A key aspect of these models is the reproduction number, which helps to understand
the nonlinear dynamics of disease transmission.

One effective way to control outbreaks is by developing and distributing vaccines on a large
scale. Vaccination can provide temporary or even lifelong immunity, preventing susceptible
individuals from becoming infected [19]. A study by [5] developed a model to examine the risk
of infection spread, the peak prevalence, and the timing of the peak. Their findings suggested
that COVID-19 cannot be entirely eradicated through vaccination alone. Instead, vaccination
may lead to a milder but prolonged epidemic unless additional non-pharmaceutical inter-
ventions (NPIs) are implemented. Similarly, [21] proposed a SEIHR model with and without
impulsive vaccination strategies, demonstrating that impulsive vaccination could significantly
accelerate disease containment. The study by [2] also found that vaccination could prevent
outbreaks when the reproduction number is reduced to less than one.

In addition to vaccination, non-pharmaceutical interventions (NPIs) are essential in curb-
ing the transmission of respiratory infections. These include measures such as quarantine,
isolation, and use of face masks. NPIs are community-level actions designed to slow infec-
tion spread during epidemics [11]. For example, [3] developed a mathematical model that
highlighted the critical role of quarantine. Their study concluded that detecting and isolat-
ing infected individuals early is crucial for controlling COVID-19 spread. The study by [14]
showed that combining vaccination with quarantine significantly reduced infections, while
the absence of these measures led to a rapid increase in cases.

Face masks are another key tool in preventing respiratory infections. There are three main
types: respirators, used primarily in healthcare settings; surgical masks, employed in both
medical and community contexts; and cloth masks, commonly used in communities [17].
Authors in [24] found that the effectiveness of face masks depends on their efficiency and
consistent, proper use both of which are crucial and interdependent factors. Despite their
importance, public resistance to wearing masks remains a challenge. However, masks are
particularly effective in limiting the spread of infection from asymptomatic individuals or
those not yet diagnosed [16]. Notably, populations in Asian countries, with prior experience
in handling coronavirus epidemics, exhibit less resistance to mask usage [8].

While these studies provide valuable insights into individual interventions, few models
simultaneously account for the combined effects of vaccination, face-mask usage, and quar-
antine in a unified framework. This forms the main motivation for this study. In real-world
settings, such interventions are often implemented together, and their joint effect on disease
transmission and control is not always linear or additive. Understanding the synergy between
these control strategies is crucial for designing effective public health policies, particularly in
resource-limited settings where optimizing intervention combinations is essential.

The novelty of this study lies in developing a deterministic compartmental model that si-
multaneously incorporates vaccination, face-mask use, and quarantine, followed by rigorous
stability and sensitivity analysis. While previous studies have investigated these interventions
separately or in pairs, our model integrates them into a comprehensive framework. Addi-
tionally, we conduct both local and global stability analyses of the disease-free equilibrium
and perform a sensitivity analysis to determine the most influential parameters affecting the
reproduction number.

Our methodological approach differs from other modelling studies in that we utilize both
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analytical and numerical tools, including the next-generation matrix method for calculating
the basic reproduction number and sensitivity analysis using normalized forward sensitiv-
ity indices. This combination allows us to not only assess the stability of the disease-free
equilibrium but also identify key levers for effective intervention strategies.

Nonetheless, this study has certain limitations. The model assumes homogeneous mixing
of the population and does not account for age structure, spatial heterogeneity, or stochastic
effects. Furthermore, the efficacy of interventions like vaccination and mask usage is assumed
constant over time, which may not hold true in real-world scenarios where compliance and
immunity can wane.

In summary, this study aims to evaluate the effectiveness of face masks, quarantine, and
vaccination as strategies for preventing and reducing the transmission of infectious respiratory
diseases. By providing a unified model and analyzing its stability and sensitivity characteris-
tics, we offer important insights into how combined interventions can be optimized for better
disease control.

2 Model formulation and development

The total human population at a given time t, denoted by N(t), is compartmentalised into
eight mutually exclusive sub-populations: susceptible (S(t)), vaccinated (V(t)), exposed (E(t)),
quarantined (Q(t)), asymptomatic but infectious (A(t)), symptomatic but infectious (I(t)), iso-
lated (J(t)) through hospitalisation or specialised care, and recovered (R(t)).

The total human population is therefore given by:

N(t) = S(t) + V(t) + E(t) + Q(t) + A(t) + I(t) + J(t) + R(t). (2.1)

The mathematical model governing the transmission dynamics of the infectious disease is
described by the following system of deterministic non-linear differential equations:

dS
dt

= Λ + (1 − d)zQ + δR − (α + λ + µ)S,

dV
dt

= αS − (µ + (1 − θ)λ)V,

dE
dt

= λS + (1 − θ)λV − (µ + g + c)E,

dQ
dt

= cE − (µ + z)Q,

dA
dt

= f gE − (µ + r1)A,

dI
dt

= (1 − f )gE − (µ + r2 + η)I,

dJ
dt

= η I + dzQ − (µ + r3)J,

dR
dt

= r1A + r2 I + r3 J − (µ + δ)R.

(2.2)

The force of infection, λ, is given by:

λ = β(1 − ϵmcm)(1 − S)(A + ϵ1 I + ϵ2 J)/N. (2.3)
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Figure 2.1: Model flow chart.

The model flow chart is shown in Figure 2.1.

The susceptible population grows at a rate Λ solely through births. A portion of the
susceptible population is vaccinated at a rate α as part of a vaccination drive. However,
the vaccine does not provide complete immunity; its efficacy, denoted by θ, ranges from
0 ≤ θ ≤ 1, where θ = 0 implies no protection and θ = 1 implies full protection against the
virus. Susceptible individuals become infected at a rate determined by the force of infection,
λ.

Through contact tracing, exposed individuals are quarantined at a rate c. After a quaran-
tine period of z, a fraction d of those who are positive are isolated, while the remainder, who
test negative, return to the susceptible class. Following a latency period of g, a fraction f of
the exposed population becomes asymptomatic, while the rest exhibit symptoms.

Asymptomatic individuals recover at a rate r1, whereas symptomatic individuals recover
at a rate r2. A subset of symptomatic individuals require specialised care in hospitals at a rate
η, and these hospitalised individuals subsequently recover at a rate r3. Recovered individuals
gradually lose immunity at a natural rate δ. Additionally, there is a natural mortality rate µ

across all compartments.

The model parameters and their values are presented in Table 2.1.
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Symbol Parameter Value Source

Λ Recruitment rate by birth 0.46436 day−1 [24]

µ Natural death rate 4.563 × 10−5

day−1
[23]

α Vaccination rate 8.157 × 10−7

day−1
[18]

d Fraction of those isolated after
quarantine

0.05 [16]

z Quarantine period 0.0714 day [23]

c Quarantine rate 0.07 day−1 [1]

f Fraction of asymptomatic individ-
uals

0.7 [23]

r1 Recovery rate of asymptomatic in-
dividuals

0.0714 day−1 Assumed

r2 Recovery rate of symptomatic indi-
viduals

1
21 day−1 Assumed

r3 Recovery rate of hospitalised indi-
viduals

0.02 day−1 Assumed

η Rate of symptomatic individuals
being hospitalised

0.94 day−1 [20]

δ Rate of loss of immunity 0.0033 day−1 [12]

β Effective contact rate 0.512 day−1 [13]

ϵ1,2 Relative infectiousness of symp-
tomatic/hospitalised individuals

0.48 [23]

ϵm Efficacy of face masks 0.5 [24]

cm Consistency in using face masks 0.1 [24]

θ Vaccine efficacy 0.8 Assumed

ηa Fraction of asymptomatic but in-
fectious individuals

0.7 [23]

s Social distancing effectiveness 0 ≤ s ≤ 1 -

Table 2.1: Model parameters and their values.
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3 Model analysis

3.1 Positivity of the solution

The model system (2.2) represents living organisms; hence, the corresponding state variables
remain non-negative for all t > 0. Therefore, the solutions to model (2.2) with positive initial
conditions remain positive for all t > 0.

Theorem 3.1. The region D = {(S(t), V(t), E(t), Q(t), A(t), I(t), J(t), R(t)) ∈ R8
+ : N(t) ≤ Λ

µ }
is positively invariant and attracting with respect to model (2.2).

Proof. Solving the first equation of (2.2) for S(t) at time t > 0, we obtain:

dS
dt

= Λ + (1 − d)zQ + δR − (λ + µ + α)S

dS
dt

≥ −(λ + µ + α)S∫ dS
S

≥ −
∫
(λ + µ + α) dt

ln S − ln S(0) ≥ −
∫
(λ + µ + α) dt

ln
S

S(0)
≥ −

∫
(λ + µ + α) dt

S
S(0)

≥ e−
∫
(λ+µ+α) dt

S ≥ S(0)e−
∫
(λ+µ+α) dt.

Clearly, S(0)e−
∫
(λ+µ+α) dt is a non-negative function of t, thus S(t) remains positive.

Equivalent arguments can be made to confirm the positivity of the other variables by utilising
their corresponding equations. This indicates that the solutions to System (2.2), starting with
non-negative initial conditions such that V(t) > 0, E(t) > 0, Q(t) > 0, A(t) > 0, I(t) > 0,
J(t) > 0, and R(t) > 0, will remain non-negative for all t ≥ 0. □

3.2 Invariant region

Theorem 3.2. For the initial conditions S(0) = S0 > 0, V(0) = V0 > 0, E(0) = E0 > 0,
Q(0) = Q0 > 0, A(0) = A0 > 0, I(0) = I0 > 0, J(0) = J0 > 0, and R(0) = R0 > 0, the solution
of system (2.2) is contained in the region H ⊂ R8

+, defined by

H =

{
[S(t), V(t), E(t), Q(t), A(t), I(t), J(t), R(t)] ∈ R8

+ : N(t) ≤ Λ
µ

}
. (3.1)

Proof. Summing all the equations of the model system (2.1) gives:

dN(t)
dt

=
dS(t)

dt
+

dV(t)
dt

+
dE(t)

dt
+

dQ(t)
dt

+
dA(t)

dt
+

dI(t)
dt

+
dJ(t)

dt
+

dR(t)
dt

. (3.2)

The change in the total population is defined by

dN
dt

= Λ − µN, (3.3)
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which implies
dN
dt

≤ Λ − µN. (3.4)

Integrating equation (3.4) using the method of separation of variables and taking N(0) =
N0, the solution is given by

N(t) ≤ Λ
µ
−

(
Λ
µ
− N0

)
e−µt, where N0 = N(0). (3.5)

The work of [4] established the Birkhoff-Rota theorem, which states that if N0 < Λ
µ , then

N(t) → Λ
µ asymptotically as t → ∞ in equation (3.1). Furthermore, the total population size

satisfies 0 ≤ N(t) ≤ Λ
µ for all t ≥ 0. Consequently, all feasible solutions of the model remain

within the region H. □

3.3 Basic reproduction number

The basic reproduction number (R0) serves as a measure of the average number of secondary
infections caused by a single infectious individual in a completely susceptible population.

The reproduction number R0 is determined using the Next Generation Matrix (NGM)
method. This involves the Jacobian matrix, derived from the model’s equations, which plays
a key role in the computation of R0.

Theorem 3.3. The basic reproduction number (R0) for the epidemiological model (2.2) is given by
equation (3.6):

R0 =
mβ0(cdzϵ2k3k4 − k2( f gk4k5 − (1 − f )gk3(k5ϵ1 − ηϵ2)))

k1k2k3k4k5
, (3.6)

where

m =
Λ
µ

, β0 = β(1 − ϵmcm)(1 − s),

k1 = −(µ + g + c), k2 = −(µ + (1 − d)z), k3 = −(µ + r1),

k4 = µ + r2 + η, k5 = µ + r3.

Proof. The basic reproduction number is defined as the spectral radius of the matrix product
FV−1. To compute this, we isolate the infectious subsystem from model system (2.2) and
derive the transmission matrix F and the transition matrix V, as given in equations (3.7) and
(3.8):

F =



0 0 mβ0 mβ0ϵ1 mβ0ϵ1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(3.7)

and
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V =



k1 0 0 0 0

c k2 0 0 0

f g 0 k3 0 0

(1 − f )g 0 0 k4 0

0 dz 0 η k5


(3.8)

Then, the matrix product FV−1 is given by:

FV−1 =



R0
mβ0ϵ2dz

k2k5

mβ0
k3

−mβ0(ϵ1k5−ηϵ2)
k4k5

−mβ0ϵ2
k5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(3.9)

Thus, the basic reproduction number is as given in equation (3.10):

R0 =
mβ0(cdzϵ2k3k4 − k2( f gk4k5 − (1 − f )gk3(k5ϵ1 − ηϵ2)))

k1k2k3k4k5
. (3.10)

□

3.4 Equilibrium analysis

3.4.1 Disease-free equilibrium point

The Disease-Free Equilibrium (DFE) for system (2.2) is attained when all infection-related
compartments are set to zero. This leads to the DFE given in equation (3.11):

E0 = (S0, V0, E0, Q0, A0, I0, J0, R0)

=

(
Λ
µ

,
αΛ
µ2 , 0, 0, 0, 0, 0, 0

)
.

(3.11)

3.4.2 Stability analysis of the disease-free equilibrium point

Theorem 3.4. (Gershgorin Circle Theorem) Let A be an n × n matrix with real entries. If the
diagonal elements aii of A satisfy

aii < ri,

where

ri =
n

∑
j=1
j,i

|aij|,

for i = 1, . . . , n, then all the eigenvalues of A are negative or have negative real parts.

The following corollaries will be used in the analysis of the equilibrium points of the proposed model.
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Corollary 1. The disease-free equilibrium is locally asymptotically stable if R0 < 1.

Corollary 2. The endemic equilibrium is locally asymptotically stable if R0 > 1.

Computing the Jacobian matrix of system (2.2) at the DFE yields the matrix in equation
(3.12):

J f =



k1 0 0 (1 − d)z −x −y −z δ

α −µ 0 0 −a −b −c 0

0 0 k3 0 A B C 0

0 0 c k4 0 0 0 0

0 0 f g 0 k5 0 0 0

0 0 (1 − f )g 0 0 k6 0 0

0 0 0 dz 0 η k7 0

0 0 0 0 r1 r2 r3 k8



(3.12)

where:

β0 = β(1 − ϵmcm)(1 − s), m =
Λ
µ

,

k1 = −(µ + α), k3 = −(µ + g + c), k4 = −(µ + (1 − d)z),

k5 = −(µ + r1), k6 = −(µ + r2 + η), k7 = −(µ + r3), k8 = −(µ + δ),

A = mβ0 + (1 − θ)mβ0, a = (1 − θ)mβ0,

b = (1 − θ)mβ0ϵ1, c = (1 − θ)mβ0ϵ2,

B = mβ0ϵ1 + (1 − θ)mβ0ϵ1,

C = mβ0ϵ2 + (1 − θ)mβ0ϵ2,

x = mβ0, y = mβ0ϵ1, z = mβ0ϵ2.

The Gershgorin Circle Theorem (GCT) states that all eigenvalues of a matrix lie within at
least one Gershgorin disc. Each disc Di is centered at the diagonal entry aii of row i and has
radius Ri, defined as the sum of the absolute values of the off-diagonal elements in that row:

Di = {z ∈ C : |z − aii| ≤ Ri} , where Ri = ∑
j,i

|aij|.

Computing the Gershgorin discs for the matrix J f :

• First row:
a11 = k1 = −µ, R1 = |(1 − d)z|+ |x|+ |y|+ |z|+ |δ|.

• Second row:
a22 = −µ, R2 = |a|+ |b|+ |c|.

• Third row:
a33 = k3, R3 = |A|+ |B|+ |C|.
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• Fourth row:
a44 = k4, R4 = |c|.

• Fifth row:
a55 = k5, R5 = | f g|.

• Sixth row:
a66 = k6, R6 = |(1 − f )g|.

• Seventh row:
a77 = k7, R7 = |dz|+ |η|.

• Eighth row:
a88 = k8, R8 = |r1|+ |r2|+ |r3|.

Since all the Gershgorin discs lie entirely within the left half of the complex plane, it follows
that all eigenvalues of J f have negative real parts. Therefore, the disease-free equilibrium is
locally asymptotically stable.

3.4.3 Global stability analysis of the DFE

We employ the quadratic Lyapunov function method to analyze the global asymptotic stability.

Theorem 3.5. (Global Stability via Quadratic Lyapunov Function)
Consider the autonomous dynamical system given by:

ẋ = f (x),

where x ∈ Rn is the state vector, and f : Rn → Rn is a continuously differentiable function. Let x∗ be
an equilibrium point of the system, i.e., f (x∗) = 0.

Suppose there exists a quadratic Lyapunov function V(x) : Rn → R of the form

V(x) = (x − x∗)⊤P(x − x∗),

where P is a symmetric positive definite matrix, i.e., P = P⊤ > 0, such that:

• Positive Definiteness: V(x) > 0 for all x , x∗, and V(x∗) = 0.

• Negative Definiteness of the Derivative: The time derivative of V(x) along the trajectories of
the system, given by

V̇(x) =
dV(x)

dt
= ∇V(x) · f (x),

is negative definite, i.e., V̇(x) < 0 for all x , x∗.

Conclusion: If the above conditions are satisfied, then the equilibrium point x∗ is globally asymp-
totically stable. That is, for any initial condition x(0) ∈ Rn, the solution x(t) converges to x∗ as
t → ∞.
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The global stability analysis is carried out by constructing the Jacobian matrix of system
(2.2) and evaluating it at the DFE, as shown in equation (3.13):

J f =



k1 0 0 (1 − d)z −x −y −z δ

α −µ 0 0 −a −b −c 0

0 0 k3 0 A B C 0

0 0 c k4 0 0 0 0

0 0 f g 0 k5 0 0 0

0 0 (1 − f )g 0 0 k6 0 0

0 0 0 dz 0 η k7 0

0 0 0 0 r1 r2 r3 k8



(3.13)

where:

β0 = β(1 − ϵmcm)(1 − s), m =
Λ
µ

,

k1 = −(µ + α), k3 = −(µ + g + c), k4 = −(µ + (1 − d)z),

k5 = −(µ + r1), k6 = −(µ + r2 + η), k7 = −(µ + r3), k8 = −(µ + δ),

A = mβ0 + (1 − θ)mβ0, a = (1 − θ)mβ0,

b = (1 − θ)mβ0ϵ1, c = (1 − θ)mβ0ϵ2,

B = mβ0ϵ1 + (1 − θ)mβ0ϵ1,

C = mβ0ϵ2 + (1 − θ)mβ0ϵ2,

x = mβ0, y = mβ0ϵ1, z = mβ0ϵ2.

A quadratic Lyapunov function of the form:

V(x) = x⊤Px

is considered, where x = (x1, x2, x3, x4, x5, x6, x7, x8)⊤, and P is a symmetric positive definite
matrix. Let P = I, the identity matrix. Then, the Lyapunov function simplifies to:

V(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8.

The time derivative of V(x) along the system trajectories is:

V̇(x) =
d
dt
(x⊤Px) = ẋ⊤Px + x⊤Pẋ.

Since P = I, we have:
V̇(x) = ẋ⊤x + x⊤ ẋ = 2x⊤ ẋ.

Substituting ẋ = Ax, yields:
V̇(x) = 2x⊤Ax.

Thus,

V̇(x) = 2
(

k1x2
1 + (1 − d)zx1x4 − mβ0x1x3 − ϵ1mβ0x1x6 − ϵ2mβ0x1x7 + δx1x8 + αx1x2 − µx2

2
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+k3x2
3 + cx3x4 + k4x2

4 + f gx3x5 + k5x2
5 + (1 − f )gx3x6 + k6x2

6 + dzx4x7 + ηx6x7 + k7x2
7

+r1x5x8 + r2x6x8 + r3x7x8 + k8x2
8

)
.

For global stability, V̇(x) must be negative definite, i.e., V̇(x) < 0 for all x , 0. This
condition is satisfied if all diagonal elements of the Jacobian are negative and the cross terms
do not dominate.

To assess local stability of the disease-free equilibrium (DFE), the Gershgorin Circle The-
orem was employed. This method provides a simple yet effective criterion for determining
whether all eigenvalues of the Jacobian matrix have negative real parts. Biologically, this
implies that if a small number of infections are introduced into the population, they will even-
tually die out, and the disease will not spread. Since none of the Gershgorin discs intersect
the right half of the complex plane, all eigenvalues lie in the left half, confirming that the DFE
is locally asymptotically stable.

In addition, a quadratic Lyapunov function was constructed to establish global stability
under certain parameter conditions. The use of Lyapunov functions in epidemiological mod-
eling is particularly valuable, as it enables verification of whether the system returns to a
disease-free state, regardless of the initial infection size. This suggests that the combined
interventions e.g., vaccination, quarantine, and face mask usage are not only effective in pre-
venting outbreaks from small perturbations but also support long-term disease elimination
when the reproduction number is kept below one.

Together, these mathematical tools offer a solid theoretical foundation for understanding
how public health interventions can stabilize disease dynamics and facilitate sustained control
or eradication efforts in real-world settings.

4 Bifurcation analysis

Bifurcation analysis plays a key role in determining parameter values or thresholds where the
system undergoes qualitative changes in behavior. These changes can indicate shifts between
disease-free states, endemic states, or even periodic outbreaks. Identifying such thresholds is
essential for understanding, predicting, and managing disease dynamics.

Theorem 4.1. (Theorem 4.1 of [7]). Consider the following general system of ordinary differential
equations with a parameter ϕ:

dx
dt

= f (x, ϕ), f : Rn × R → R, f ∈ C2(Rn × R). (4.1)

Where 0 is an equilibrium point of the system (i.e., f (0, ϕ) = 0, ∀ϕ), and assume:

• A = Dx f (0, 0) =
[

∂ fi
∂xj

(0, 0)
]

is the linearization matrix of (4.1) around the equilibrium point
0, with ϕ evaluated at 0. Zero is a simple eigenvalue of A, and all other eigenvalues of A have
negative real parts.

• Matrix A has a right eigenvector w and a left eigenvector v, each corresponding to the zero
eigenvalue.

Let fk denote the k-th component of f , and define:

a =
n

∑
k,i,j=1

vkwiwj
∂2 fk

∂xi∂xj
(0, 0),
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b =
n

∑
k,i=1

vkwi
∂2 fk

∂xi∂ϕ
(0, 0).

The local dynamics of system (4.1) near the origin is fully determined by the signs of a and b:

(i) If a > 0, b > 0: when ϕ < 0, with |ϕ| ≪ 1, the origin is locally asymptotically stable and
a positive unstable equilibrium exists; when 0 < ϕ ≪ 1, the origin is unstable and a locally
asymptotically stable equilibrium emerges.

(ii) If a < 0, b < 0: when ϕ < 0, the origin is locally asymptotically stable with a positive unstable
equilibrium; when ϕ > 0, the origin becomes unstable and a positive unstable equilibrium arises.

(iii) If a > 0, b < 0: when ϕ < 0, the origin is unstable and a locally asymptotically stable negative
equilibrium exists; when ϕ > 0, the origin is stable and a positive unstable equilibrium appears.

(iv) If a < 0, b > 0: as ϕ changes from negative to positive, the origin changes its stability from
stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally
asymptotically stable.

Let the model system be written in the vector form:

dX
dt

= G(X), (4.2)

where
X = (x1, x2, x3, x4, x5, x6, x7, x8)

T, G = (g1, g2, g3, g4, g5, g6, g7, g8).

So that S = x1, V = x2, E = x3, Q = x4, A = x5, I = x6, J = x7, R = x8. The model equations
are represented in equations (4.3):

dx1

dt
= Λ + (1 − d)zx4 + δx8 − (α + λ + µ)x1,

dx2

dt
= αx1 − (µ + (1 − θ)λ)x2,

dx3

dt
= λx1 + (1 − θ)λx2 − (µ + g + c)x3,

dx4

dt
= cx3 − (µ + z)x4,

dx5

dt
= f gx3 − (µ + r1)x5,

dx6

dt
= (1 − f )gx3 − (µ + r2 + η)x6,

dx7

dt
= ηx6 + dzx4 − (µ + r3)x7,

dx8

dt
= r1x5 + r2x6 + r3x7 − (µ + δ)x8.

(4.3)

Let β be the bifurcation parameter. Setting R0 = 1 in equation (3.6) and solving for β

yields:

β = β̂ =
k1k2k3k4k5

m (cdzϵ2k3k4 − k2( f gk4k5 − (1 − f )gk3(k5ϵ1 − ηϵ2)))
. (4.4)

The disease-free equilibrium E0 is locally stable when β < β̂, and becomes unstable when
β > β̂. Consequently, β̂ represents the bifurcation value.
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The linearized matrix of system (2.2) at the disease-free equilibrium E0, evaluated at β = β̂,
is:

J (E0|β̂) =



k1 0 0 (1 − d)z −x −y −z δ

α −µ 0 0 −a −b −c 0

0 0 k3 0 A B C 0

0 0 c k4 0 0 0 0

0 0 f g 0 k5 0 0 0

0 0 (1 − f )g 0 0 k6 0 0

0 0 0 dz 0 η k7 0

0 0 0 0 r1 r2 r3 k8



(4.5)

where:

• β0 = β(1 − ϵmcm)(1 − s),

• k1 = −(µ + α), k2 = −µ, k3 = −(µ + g + c), k4 = −(µ + (1 − d)z),

• k5 = −(µ + r1), k6 = −(µ + r2 + η), k7 = −(µ + r3), k8 = −(µ + δ),

• A = mβ0 + (1 − θ)mβ0, a = (1 − θ)mβ0,

• b = (1 − θ)mβ0ϵ1, c = (1 − θ)mβ0ϵ2,

• B = mβ0ϵ1 + (1 − θ)mβ0ϵ1, C = mβ0ϵ2 + (1 − θ)mβ0ϵ2,

• x = mβ0, y = mβ0ϵ1, z = mβ0ϵ2,

• m = Λ
µ .

The eigenvalues consist of seven real and negative values, along with a single zero eigen-
value, which can be determined using Wolfram Mathematica software as k1, k2, k3, k4, k5, k6, k6, k7, k8.
The zero eigenvalue is simple for the Jacobian matrix J (E0|β̂), while the remaining eigen-
values are distinct and negative. Hence, the disease-free equilibrium (DFE), E0, is a non-
hyperbolic equilibrium, consistent with the assumption in Theorem 4.1 of [7].

Consequently, the center manifold theory can be utilized to analyze the local stability of the
DFE, E0. The right eigenvector, m = (m1, m2, m3, m4, m5, m6, m7, m8)T, and the left eigenvector,
v = (v1, v2, v3, v4, v5, v6, v7, v8), corresponding to the simple zero eigenvalue of J (E0|β̂), satisfy
the condition v · m = 1. These eigenvectors can be obtained by multiplying vJ and mJ and
setting the resulting expressions equal to zero. The resulting system of the right eigenvalues
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become;
m1k1 + m4(1 − d)z + m5a1 + m6a2 + m7a3 + m8δ = 0,

m1α + m2k2 + m5a4 + m6a5 + m7a6 = 0,

m3k3 + m5b1 + m6b2 + m7b3 = 0,

m3c + m4k4 = 0,

m3 f g + m5k5 = 0,

m3(1 − f )g + m6k6 = 0,

m4dz + m6η + m7k7 = 0,

m5r1 + m6r2 + m7r3 + m8k8 = 0.

(4.6)

From the equation 4.6 above:

Let m3 > 0, then:

m4 =
cm3

k4
, m5 =

f gm3

k5
,

m6 =
(1 − f )gm3

k6
, m7 = −

(
(1 − f )gm3

k6
+

c
k4

)
m3

k7
,

m8 = − 1
k8
(m5r1 + m6r2 + m7r3), m1 = − 1

k1
(m4(1 − d)z + m5a1 + m6a2 + m7a3 + m8δ),

m2 = − 1
k2
(m1α + m5a4 + m6a5 + m7a6).

(4.7)
Also, the left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8), corresponding to the zero eigen-

value is obtained from J (E0|β̂) = 0, which yields;

v1k1 + v2α = 0,

v2k2 = 0,

v3k3 + v4c + v5 f g + v6(1 f )g = 0,

v1(1d)z + v4k4 + v7dz = 0,

−v1x − v2a − v3A + v5k5 + v8r1 = 0,

−v1y − v2b − v3B + v6k+v7η + v8r2 = 0,

−v1x − v2c − v3C + v7k7 = 0,

v1δ + v8k8 = 0.

(4.8)

From equation 4.8 above, v1 = v2 = v8 = 0. Then,

let, v4 = v4 > 0, then; v7 =
−k4v4

dz
,

v3 =
k7k4v4

b3dz
,

v5 =
−(b1k7k4v4)

dzb3k5
,

v6 = −v3b2 + v7η

k6
.

(4.9)

To satisfy the condition v.m = 1, we determine the value of v2. To compute the bifurcation
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coefficients a and b as defined in Theorem 4.1, we consider system model 2.1 in the following
form:

dX
dt

= f = ( f1, f2, f3, f4, f5, f6, f7, f8)
T (4.10)

where X = (x1, x2, x3, x4, x5, x6, x7, x8)T.
The coefficients a and b are derived from the partial derivatives in equations 33 and 35, re-
spectively.

a =
8

∑
k,i,j=1

vkmimj
∂2 fk

∂xi∂xj
(0, 0), (4.11)

and

b =
8

∑
k,i=1

vkmi
∂2 fk

∂xi∂ξ̂
(0, 0). (4.12)

Since the components v1, v2, and v8 are zero, it is unnecessary to compute the derivatives of
f1, f7, and f8. Among the derivatives of the remaining functions f3, f4, f5, f6, and f7, only those
with non-zero partial derivatives are taken into account, such that:

∂2 f3

∂x1∂x5
=

∂2 f3

∂x5∂x1
= 1,

∂2 f3

∂x1∂x7
=

∂2 f3

∂x7∂x1
= ϵ2,

∂2 f3

∂x1∂x6
=

∂2 f3

∂x6∂x1
= ϵ1,

∂2 f3

∂x2∂x5
=

∂2 f3

∂x5∂x2
= (1 − θ),

∂2 f3

∂x2∂x6
=

∂2 f3

∂x6∂x2
= (1 − θ)ϵ1,

∂2 f3

∂x2∂x7
=

∂2 f3

∂x7∂x2
= (1 − θ)ϵ2.

(4.13)

Considering the study of [6], the indication of whether a forward or backward bifurcation
occurs is determined by the parameter a. Consequently, this yields Equation (32):

a = 2v5m1m5 + 2v3m1m7ϵ2 + 2v3m1m6ϵ1 + 2v3m1m5(1 − θ)

+ 2v3m1m7(1 − θ)ϵ2 + 2v3m1m6(1 − θ)ϵ1 > 0.
(4.14)

Therefore, a mathematical system consisting of equations, as presented in Equation (2.2),
exhibits a forward bifurcation at R0 = 1, given that β > β̂ (representing the effective contact
rate). The bifurcation analysis of the model reveals the occurrence of a forward bifurcation at
the critical threshold where the basic reproduction number R0 = 1.

In epidemiological terms, a forward bifurcation implies that the disease-free equilibrium
is stable when R0 < 1, and an endemic equilibrium emerges and becomes stable only when
R0 > 1. This behavior suggests that bringing R0 below unity is both necessary and sufficient
for disease elimination.

From a public health perspective, this means that intervention strategies—such as mass
vaccination, early detection and isolation of cases, and widespread use of face masks—can
effectively reduce the reproduction number below the critical threshold and lead to disease
eradication. Moreover, the absence of a backward bifurcation indicates that there is no risk
of disease persistence when R0 < 1, which simplifies control efforts and emphasizes the
importance of early and sustained interventions to maintain this condition.

5 Sensitivity analysis

To determine the most efficient intervention program, sensitivity analysis plays a key role in
decision-making. While disease transmission is related to R0, the prevalence of the disease is
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related to the endemic equilibrium. Sensitivity indices provide insights into the significance
of each parameter in influencing disease transmission and prevalence.

A parameter with a higher index indicates a greater influence and should thus be priori-
tized for regulation. A negative sensitivity index implies that increasing the parameter value
leads to a reduction in disease prevalence and transmission, whereas a positive index suggests
that an increase in the parameter will result in increased transmission and prevalence.

We conducted a sensitivity analysis following the method proposed by [9] and further
elaborated by [23]. The analysis used the normalized forward sensitivity index, defined as follows:

Sn =
∂R0

∂ν
· ν

R0
, (5.1)

where ν represents a model parameter.
The table below shows the sensitivity indices of the parameters used:

Table 5.1: Sensitivity indices of model parameters

Symbol Sensitivity Index

d 0.001

z 0.001

c -0.0744

f 0.4125

g 0.7325

η 0.0004

ϵm -0.3158

cm -0.32

s -0.4286

µ -2.5607

Λ 1

β 1

6 Numerical simulations

To analyze the impact of various interventions on the prevention and management of respi-
ratory infections, numerical simulations were performed using System Model 1. The model
utilized parameter values derived from existing studies, with certain estimates made to ensure
meaningful analysis in this context.

For this study, the parameter values listed in Table 1 were used for the simulations, which
spanned a time period of 0 ≤ t ≤ 100 days, representing the expected timeframe for the
disease to complete its course. The simulations were carried out using Python, with Jupyter
Notebook serving as the integrated development environment (IDE). The results are presented
graphically.



48 H. Wanjala, M. Okongo and J. Ochwach

6.1 Numerical simulation on the impact of vaccination rate and efficacy

Increasing the vaccination rate, as illustrated in Figure 6.1, significantly reduces the number
of symptomatic infections, as more individuals are immunized before being exposed to the
disease. Higher vaccination rates also shift the timing of peak infections earlier, indicating
quicker control of the outbreak. Furthermore, the magnitude of peak infections decreases
with faster vaccination, demonstrating the effectiveness of immunization in curbing disease
transmission. Ultimately, higher vaccination rates accelerate the decline in infections, leading
to a shorter epidemic duration and improved overall containment.

The simulation in Figure 6.2 demonstrates that higher vaccine efficacy leads to a sub-
stantial reduction in the number of symptomatic infections (I), emphasizing the importance
of developing and administering highly effective vaccines. As vaccine efficacy increases, the
peak of symptomatic infections becomes smaller and occurs earlier, indicating faster and more
effective disease control. Lower efficacy results in higher infection peaks and prolonged dis-
ease spread, highlighting the vulnerability of the population when vaccine performance is
suboptimal. Overall, improving vaccine efficacy significantly mitigates the severity and dura-
tion of the outbreak, underlining its critical role in managing infectious diseases, as illustrated
in Figure 6.2.

Figure 6.1: Effect of varying vaccination
rate

Figure 6.2: Effect of varying vaccination
efficacy

6.2 Numerical simulation on the impact of face mask compliance

The simulation in Figure 6.3 reveals that increasing face mask compliance (ϵm) significantly
reduces the peak and overall size of the symptomatic infected population (I), demonstrating
the effectiveness of masks in controlling disease spread. With higher compliance, the infec-
tion curve flattens and peaks later, highlighting the role of masks in delaying and mitigating
outbreaks. Low or no compliance leads to a sharp and higher infection peak, overwhelm-
ing public health systems, while full compliance achieves maximum reduction in infections.
These results underscore the critical importance of widespread mask usage as a simple yet
powerful intervention in infectious disease management.
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6.3 Numerical simulation on the impact of consistent face mask use

The simulation in Figure 6.4 demonstrates that consistent mask-wearing, with an 80% reduc-
tion in effective transmission, substantially lowers both symptomatic (I) and asymptomatic
(A) infections over time. Symptomatic infections show a notable peak followed by a steady
decline, while asymptomatic infections maintain a lower profile throughout the simulation,
indicating masks’ significant impact on reducing disease spread. The reduced transmission
also delays the infection peaks, offering additional time for healthcare systems to manage
cases and implement further interventions. Overall, consistent mask-wearing proves to be
an effective strategy in controlling the outbreak and minimizing the burden of symptomatic
cases.

Figure 6.3: Effect of varying mask compli-
ance

Figure 6.4: Effect of varying consistent
mask use

6.4 Numerical simulation on the impact of quarantine

The simulation in Figure 6.5 highlights the critical role of quarantine in mitigating infection
dynamics, with quarantined individuals (Q) peaking shortly after the rise in exposed (E) and
asymptomatic (A) infections. Symptomatic infections (I) experience a delayed and lower peak
compared to models without quarantine, demonstrating its effectiveness in reducing trans-
mission. The exposed compartment steadily decreases as individuals are quarantined, while
asymptomatic and symptomatic cases remain controlled due to timely isolation measures.
Overall, the implementation of quarantine effectively suppresses the outbreak by breaking
chains of transmission and reducing the burden on the susceptible population.

7 Conclusion

This study developed and analyzed a novel mathematical model that integrates vaccination,
quarantine, and face mask usage to assess their collective impact on the transmission dynam-
ics of infectious respiratory diseases. The model provides a unified framework to evaluate the
effectiveness of these public health interventions both analytically and numerically.

Through rigorous stability analysis using the Gershgorin Circle Theorem and global sta-
bility techniques, the disease-free equilibrium (DFE) was shown to be locally asymptotically
stable under appropriate conditions. Bifurcation analysis further confirmed the presence of a
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Figure 6.5: Effect of applying quarantine

forward bifurcation, indicating that the disease can be eradicated when the basic reproduction
number is brought below one through targeted interventions.

Numerical simulations and sensitivity analysis revealed that certain parameters particu-
larly the contact rate, vaccination rate, and mask compliance play a critical role in determin-
ing the progression and control of the disease. These findings underscore the importance of
strengthening and maintaining a combination of public health measures rather than relying on
a single intervention strategy. Specifically, the results suggest that high compliance with mask
usage, increased vaccine coverage, and effective quarantine procedures work synergistically
to reduce the basic reproduction number and suppress disease outbreaks.

Compared to existing models, which often analyze these interventions in isolation, this
study contributes a more holistic perspective by simultaneously incorporating multiple lay-
ers of disease control. The sensitivity analysis offers practical insights for policymakers by
identifying the most influential parameters to target when designing intervention strategies.
Furthermore, the deterministic framework employed ensures computational efficiency and
interpretability, making the model suitable for use in informing real-time decision-making.
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