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Abstract. In this study, we acquired spectral results for the diffusion operator under
higher-order approximations. We reconstruct the well-known techniques and derive
the essential results for the presented problem. The spectral results for the diffusion
operator with high-order approximations were evaluated, focusing on solutions in the
Paley-Wiener space. Additionally, we consider theorems that involve solutions belong-
ing to the Paley-Wiener space and the applications of Shannon’s sampling theorem. We
also examine and evaluate the diffusion operator under more general separable bound-
ary conditions.
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1 Introduction
In this study, we consider the following diffusion equation

—y" +1q(x) +2Ap (x)]y = A%y, x€0,7], (1.1)

where the function g (x) € L2 [0, 7], p (x) € L?[0, 7). Note that several spectral problems have
been extensively analyzed for the diffusion operator in [1,2,10,11].
We focus on the following problem

—y" + 19 (x) +2Ap (x)]y = A%y, (1.2)

y(0)=1, y(0)=—h, (1.3)

where 1 is a finite number. Let us indicate by ¢ (x, A) the solution of (1.2) satisfying the initial
conditions (1.3). Following [10], let

¢ (x,A) =cos[Ax —a( +/ (x,T cos)\TdT+/ (x,T)sinAtdr, (1.4)
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where

K(x) =xp (0) +2 [ {M(ZD)sin () ~ N (§,8) cos (§)} dE,

q(x) =—p?(x) +2ddx {M (x,x)cos&(x)+ N (x,x)sina& (x)}, (1.5)
M(0,0) = h, N (x,0) =0, Wa(ifT) =0 am= Oxp(T)dT,

and the nth eigenvalue is
A —

where

1 (7 >
coz—/ p(x)dx, Z|c1,n| < 00,

1 (h+H+2/ +p()]dx>,

and H is a finite number.
In this work, we focus on and evaluate the diffusion equation under more general separable
boundary conditions

(1.7)

—¢" +[9(x) +2Ap (x)] ¢ = A%y, x€[0,7],

allllJ (0,/\) — LZ121/J/ (0, )\) = 0,

, (1.8)
any (7T,)L) + azzlp (71',)&) =0.

where a3, +a%, #0, a3, +a3, # 0. Also, let A = p? and ¢ (x, #?) denotes the solution of the
following initial value problem

9"+ [q (%) +2p%p ()] ¢ = 'y,
¥ (0,4 =an, ¥ (0,p4%) =an.

Furthermore, the eigenvalues of (1.8) are the squares of the zeroes of the boundary function

B(n), , ,

B (1) :=any (1) +any’ (m,p7).
Additionally, the mentioned boundary function is an entire function that belongs to y in the
case of Dirichlet. This function is of type 7 and order 1. In addition, it belongs to the Paley-
Wiener space in the following form

PW, = {fis entire, |f(u)| <cexp[m |Imul], fe€L*(R)}.

2 Main results and discussions under high-order approximations

Following the work in [10], we define the function y(x, u?) as

y (x,u?) = cos [pu?x —a ( —|—/ (x,t) cos (u*t) dt+/ (x,t)sin (y?t) dt,

We now state the following results:
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Theorem 2.1. Let
0
o (v, 1) =y (x,p),

X

[ Vx, ) = / {M (x,t) cos (u?t) + N (x,t) sin (p°t) } dt — / {N (x,t)sin (u?t) } dt, (2.1)
0 0
@o (x, 1) = cos [p?x — & (x)],

and
X

on (X, 1) = / {M (x,t)cos (u?t) + N (x,t)sin (p*t) } @n_1 (t, u) dt,

—1
o (e, 1) = o (1) = g (1),

X

["] (x,u) = [" U (x, 1) — /M (x,t) cos (yzt) @n_1 (t, u)dt, (2.2)
0

B (2, 1) = ol (x, ) + a2}’ (x,1),

for n > 1. Where upon

o (1), 00 (1), 08" (2, ) , B (x, ) € P,

for n > 1. Moreover, we have the subsequent estimates,

9 (1) < ()",
v[n] ) C3(c6)"ex|ImV |
(2.3)
o8 (o) < esfeo)"ermr,
‘B[n] X, ) C5(C6)n x|Imy ’
where
:/ max M (x,1)|dt,c; = / max [N (x,)|dt,
S 0<x<m
0 0
3 = exp (Cl + CoCz) , C4=1C1C3, C5= ‘1121’ c3 + ]a22| C4, Ce = C1 -+ CoCa.
Proof. 1t is obvious that
X
vgn] (x, 1) = @ (x, 1) + / {M (x,t) cos (u?t) + N (x,t) sin (pt) } vgn] (t, ) dt,
0 (2.4)

H(xy /Mxtcos(yt)[](,y)dt,

also, the proof is performed by induction on #.
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We would like to remind that we will use the following estimates [5] to prove the estimates
(2.3) forn =0,
lcosu| < e!™ul,|sinu| < cpe!™u!, (2.5)
where ¢y is an arbitrary constant (we could get ¢ = 1.72). By means of this approach we
obtain,

9o (x, 1) < eIl

and from (2.4), we have

X

/ {M (x,t) cos (y*t) + N (x,t) sin (p*t) } Ugo] (t, u)dt
0

ol (x,1)| < Igo (x.10)] +

<o (x,p)| + / |M (x,1)| |cos (?t) | ‘vgo} (t,y)} dt
0
+/|N(x,t)| |sin (4°t)] ‘vgo} (t,y)‘ dt
0

X
< x| pr| i </ M) e ! ol (1 | ar
0

+CO/IN(%OI et )”50} (W)‘ dt) ,
0

from which we get
o ()| e ‘x'““”’<1+/ 1M (e, )]+ co N (e ) 1=t ol (1)t

and using Gronwall’s Lemma, yields

s

J max (|M(x,t)\)dt+c0f max (|N(x,t)|)dt

‘ [0] (x, V)‘ < pb O0sxsm b 0=v<7 ex|1my2|
< el
and
‘v£ X, U ’—/|M (x,1)] |cos (1?t)| ‘ o} ty)’dt,
T
Sexllm”2|C3/ max (|M (x,1)]) dt,
0<x<m
0
< cperlimi],
Furthermore,

899 o) < Jea [of? (10 + el ol 10,
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S c5€x‘ Imyz ’.

Therefor, the estimates of (2.3) are true for n = 0.
In this part of our work, we suppose the estimates (2.3) are true for n — 1, and then we
prove for the value of n. From equalities (2.2), we have

9u ()| < [ 1M (5, D) [eos (12 |- (8 10)]
0

* / N (x, )] [sin (4*t) | |@n—1 (t, )| dt,
0

X
< [AM G )]+ o N (x, 0]} e &0 gy el Lt
0

< (C6)nex| Imyz |’
and from (2.4), we acquire

X

o o] < lgu el + [ 1M 0 feos ()] ol 6,0,
0

X

+ [N G ) sin (421)|

0

Ug”} (t,y)‘ dt,

< (e)"e 1 ol ( [ 1M 01+l nl el ol (0 ”’t) '
0

so that

o0 (e 0] e 1™ < (e + [ (1 3,11+ o N oy e ol 0,
0

from which we get

e T
[ max (M(xt)tsen [ max (NG

[n] n o 0<y<m )t x|Imy2|
v (X, )| < (co)e e ,

S C3(C6)n€x‘ ImVZ |’

and so,
X
ol )| < [ 194 1) eos (12)] o} (1)t
0

7T

Sex|1m}tz|c3,(c6)”/ Orgai( (|M (x,t)|) dt,
<x<m
0

< C4(C6)n€x‘ Imyz ’
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Moreover,
|BY )| < Jazi| [0l ()| + [azal [0} (.10
< C5(C6)n€x|lmV2 ’
Therefor, the proof is complete. The estimates (2.3) are true for all values of n. m]

Theorem 2.2. (Whittaker-Shannon-Kotel'nikov) Let f € PWy, then
= sinmt (u — k)
= k) —————2,

where the series converges uniformly on the compact subsets of R and also in Lfly [15].

3 Conclusion

In the present research, we investigated the diffusion operator in detail and derived essential
spectral results for the diffusion equation under high-order approximations. We considered a
diffusion operator under more general separable boundary conditions. We then obtained the
necessary results by modifying existing techniques for the presented problem. The applied ap-
proach is based on Shannons sampling theorem, a well-established technique in the literature.
The significant results obtained are evaluated using the Paley-Wiener spaces. The mathe-
matical framework is firmly based on spectral theory, and the proofs follow well-established
approaches to Sturm-Liouville problems. These assessments demonstrate the validity and
strength of the obtained results.
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