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Abstract. In this work, we show that the system of difference equations

xn+1 =
ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
,

yn+1 =
axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

where n ∈ N0, x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real numbers and a,
b, c and d are arbitrary real numbers with d , 0, can be solved in a closed form.
We will see that when a = b = c = d = 1 the solutions are expressed using the famous
Tetranacci numbers. In particular, the results obtained here extend those in our recent
work.
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1 Introduction

Nonlinear difference equations and their systems are hot topics that attract the attention of
several researchers. A significant number of papers are devoted to this field of research. One
can consult, for example, the papers [3, 5–18, 20–23, 26, 27, 30, 31, 36–44, 46], where one can
find concrete models of such equations and systems, as well as understand the techniques
used to solve them and investigate the behavior of their solutions. Recently, in [1] and as a
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generalization of the equations and systems studied in [4,19,32,45], we have solved in a closed
form the system of difference equations

xn+1 =
aynxn−1 + bxn−1 + c

xn−1yn
,

yn+1 =
axnyn−1 + byn−1 + c

yn−1xn
.

(1.1)

Here, and motivated by the above papers, one shows that one can express in closed form the
well-defined solutions of the following system of difference equations

xn+1 =
ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
,

yn+1 =
axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

(1.2)

where n ∈ N0, the initial values x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real
numbers and the parameters a, b, c and d are arbitrary real numbers with d , 0.

Clearly if d = 0, then System (1.2) is nothing other than system (1.1). For the readers
interested in the solutions of this system, one refers to [1], where the system (1.1) has been
completely solved.
Noting also that the system (1.2) can be seen as a generalization of the equation

xn+1 =
axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈N0. (1.3)

In fact, the solutions of (1.3) can be obtained from the solutions of (1.2) by choosing y−i =

x−i, i = 0, 1, 2. The equation (1.3) was the subject of a substantial part of the paper [4], which
also motivated our present study. The same equation was studied in complex numbers by
Stevic in [29].

We will see that the explicit formulas of the well defined solutions of system (1.2) are
expressed using the terms of the sequence (Jn)

+∞
n=0 which are the solutions of the fourth-order

linear homogeneous difference equation defined by the relation

Jn+4 = aJn+3 + bJn+2 + cJn+1 + dJn, n ∈N0, (1.4)

and the special initial values

J0 = 0, J1 = 0, J2 = 1 and J3 = a. (1.5)

In this article one solves in closed form the equation (3.3). This well-known equation (with
the same or different initial values and parameters) was the subject of some papers in the
literature, see for example [25, 29, 47].

The characteristic equation associated to (3.3) is

λ4 − aλ3 − bλ2 − cλ− d = 0, (1.6)

and let α, β, γ and δ its four roots, then
α + β + γ + δ = a

αβ + αγ + αδ + βγ + βδ + γδ = −b

αβγ + αβδ + αγδ + βγδ = c

αβγδ = −d

(1.7)
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One has:
Case 1: If all roots are real and equal. In this case,

Jn =
(
c1 + c2n + c3n2 + c4n3) αn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
−n + n3

6α2

)
αn. (1.8)

Case 2: If three roots are real and equal, i.e. β = γ = δ. In this case

Jn = c1αn +
(
c2 + c3n + c4n2) βn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(β− α)3 αn +

(
α

(β− α)3 −
n(α + β)

2β(β− α)2 +
n2

2β(β− α)

)
βn, (1.9)

Case 3: If two real roots are equal, i.e. γ = δ. In this case

Jn = c1αn + c2βn + (c3 + c4n) γn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)2(β− α)
αn +

β

(γ− β)2(β− α)
βn +

(
αβ− γ2

(γ− α)2(γ− β)2 +
n

(γ− α)(γ− β)

)
γn,

(1.10)
Case 4: If two double real roots are equal, i.e. α = β , γ = δ. In this case

Jn = (c1 + c2n) αn + (c3 + c4n) γn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
γ + α

(γ− α)3 +
n

(γ− α)2

)
αn +

(
− γ + α

(γ− α)3 +
n

(γ− α)2

)
γn, (1.11)

Case 5: If all the roots are real and different. In this case

Jn = c1αn + c2βn + c3γn + c4δn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(δ− α)(γ− α)(β− α)
αn +

β

(δ− β)(γ− β)(β− α)
βn +

−γ

(δ− γ)(γ− β)(γ− α)
γn

+
δ

(δ− γ)(δ− β)(δ− α)
δn. (1.12)

Case 6: If two real roots are equal, i.e. α = β and two roots are complex conjugate, i.e.
δ = γ. In this case

Jn = (c1 + c2n)αn + c3γn + c4γn.
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Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
γγ− α2

(γ− α)2(γ− α)2 +
n

(γ− α)(γ− α)

)
αn +

−γ

(γ− γ)(γ− α)2 γn

+
γ

(γ− γ)(γ− α)2 γn. (1.13)

Case 7: If two real roots α, β are different and two roots are complex conjugate, i.e.
δ = γ. In this case

Jn = c1αn + c2βn + c3γn + c4γn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)(γ− α)(β− α)
αn +

β

(γ− β)(γ− β)(β− α)
βn +

−γ

(γ− γ)(γ− β)(γ− α)
γn

+
γ

(γ− γ)(γ− β)(γ− α)
γn. (1.14)

Case 8: If two complex roots are equal, i.e. α = γ and β = δ = α. In this case

Jn = (c1 + c2n)αn + (c3 + c4n)αn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
α + α

(α− α)3 +
n

(α− α)2

)
αn +

(
−α− α

(α− α)3 +
n

(α− α)2

)
αn. (1.15)

Case 9: If the roots are all complex and different, i.e. β = α and δ = γ. In this case

Jn = c1αn + c2αn + c3γn + c4γn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)(γ− α)(α− α)
αn +

α

(γ− α)(γ− α)(α− α)
αn +

−γ

(γ− γ)(γ− α)(γ− α)
γn

+
γ

(γ− γ)(γ− α)(γ− α)
γn. (1.16)

2 The main theorem and some particular cases

Here, one gives a closed form for the well defined solutions of the system (1.2) with d , 0.
One will use the same change of variables as in [1] to transform the system (1.2) to a linear
one and then follows the same procedure as in [1] to obtain the closed-form of the solutions.
To get the solutions of the corresponding linear system, one needs to solve some fourth-order
linear difference equations. In particular, one derives from the main result (Main Theorem),
for which one leaves the proof to the next section, the solutions of some particular systems
and equations where their solutions are related to the famous Tetranacci numbers.
One recalls that by a well defined solution of system (1.2), one means a solution that satisfies
xnyn , 0, n ≥ −2. The set of well defined solutions is not empty. In fact, it suffices to choose
the initial values and the parameters a, b, c and d positive, to see that every solution of (1.2)
will be well defined.
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2.1 Closed form of well defined solutions of the system (1.2)

The following result gives an explicit formula for well-defined solutions of the system (1.2).

Theorem 2.1. (Main Theorem) Let {xn, yn}n≥−2 be a well defined solution of (1.2). Then, for
n ∈N0, one has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2) x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,

y2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4) x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2
,

where the initial values x−2, x−1, x0, y−2, y−1 and y0 ∈ (R− {0})− F, with F is the Forbidden
set of system (1.2) given by

F =
∞⋃

n=0

{(x−2, x−1, x0, y−2, y−1, y0) ∈ (R− {0}) : An = 0 or Bn = 0} ,

where

An = dJn+1 + (cJn+1 + dJn) y−2 + (Jn+3 − aJn+2) x−1y−2 + Jn+2y0x−1y−2,

Bn = dJn+1 + (cJn+1 + dJn) x−2 + (Jn+3 − aJn+2) y−1x−2 + Jn+2x0y−1x−2.

2.2 Particular cases

Now, we focus our study on some particular cases of system (1.2).

2.2.1 The solutions of the equation xn+1 = (axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d) / (xn−2xn−1xn)

If one chooses y−2 = x−2, y−1 = x−1 and y0 = x0, then system (1.2) is reduced to the equation

xn+1 =
axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈N0. (2.1)

So, it follows from the Main Theorem

Corollary 2.2. Let {xn}n≥−2 be a well defined solution of the equation (2.1). Then for n ∈ N0, one
has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) x−1x−2 + J2n+3x0x−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) x−1x−2 + J2n+2x0x−1x−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) x−1x−2 + J2n+4x0x−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) x−1x−2 + J2n+3x0x−1x−2
.

It is worth noting that this equation was studied in [4, 29].
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2.3 The solutions of the system (1.2) with a = b = c = d = 1

Consider the system
xn+1 =

yn−2xn−1yn + xn−1yn−2 + yn−2 + 1
yn−2xn−1yn

,

yn+1 =
xn−2yn−1xn + yn−1xn−2 + xn−2 + 1

xn−2yn−1xn
, n ∈N0,

(2.2)

which is a particular case of the system (1.2) with a = b = c = d = 1. In this case the sequence
{Jn} is nothing other than the sequence of Tetranacci numbers {Tn}, that is

Tn+4 = Tn+3 + Tn+2 + Tn+1 + Tn, n ∈N0, where T0 = T1 = 0, T2 = 1 and T3 = 1,

and one has

Tn =
−α

(γ− α)(γ− α)(β− α)
αn +

β

(γ− β)(γ− β)(β− α)
βn +

−γ

(γ− γ)(γ− β)(γ− α)
γn

+
γ

(γ− γ)(γ− β)(γ− α)
γn, n ∈N0,

with

α =
1
4
+

1
2

ω +
1
2

√
11
4
−ω2 +

13
4

ω−1, β =
1
4
+

1
2

ω− 1
2

√
11
4
−ω2 +

13
4

ω−1,

γ =
1
4
− 1

2
ω +

1
2

√
11
4
−ω2 − 13

4
ω−1, δ =

1
4
− 1

2
ω− 1

2

√
11
4
−ω2 − 13

4
ω−1,

ω =

√√√√√√11
12

+

(
−65
54

+

√
563
108

)1
3
+

(
−65
54
−
√

563
108

)1
3

.

The 1-dimensional version of the system (2.2), is the equation

xn+1 =
xn−2xn−1xn + xn−1xn−2 + xn−2 + 1

xn−2xn−1xn
, n ∈N0. (2.3)

From the main theorem it follows respectively.

Corollary 2.3. Let {xn, yn}n≥−2 be a well defined solution of (2.2). Then, for n ∈N0, one has

x2n+1 =
T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3) x−1y−2 + T2n+3y0x−1y−2

T2n+1 + (T2n+1 + T2n) y−2 + (T2n+3 − T2n+2) x−1y−2 + T2n+2y0x−1y−2
,

x2n+2 =
T2n+3 + (T2n+3 + T2n+2) x−2 + (T2n+5 − T2n+4) y−1x−2 + T2n+4x0y−1x−2

T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2
,

y2n+1 =
T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2

T2n+1 + (T2n+1 + T2n) x−2 + (T2n+3 − T2n+2) y−1x−2 + T2n+2x0y−1x−2
,

y2n+2 =
T2n+3 + (T2n+3 + T2n+2) y−2 + (T2n+5 − T2n+4) x−1y−2 + T2n+4y0x−1y−2

T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3) x−1y−2 + T2n+3y0x−1y−2
.
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Corollary 2.4. Let {xn}n≥−2 be a well defined solution of the equation (2.3). Then for n ∈ N0, one
has

x2n+1 =
T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) x−1x−2 + T2n+3x0x−1x−2

T2n+1 + (T2n+1 + T2n) x−2 + (T2n+3 − T2n+2) x−1x−2 + T2n+2x0x−1x−2
,

x2n+2 =
T2n+3 + (T2n+3 + T2n+2) x−2 + (T2n+5 − T2n+4) x−1x−2 + T2n+4x0x−1x−2

T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) x−1x−2 + T2n+3x0x−1x−2
.

Remark 2.5. When a = d = 0, the system (1.2) takes the form

xn+1 =
bxn−1 + c

ynxn−1
, yn+1 =

byn−1 + c
xnyn−1

n ∈N0. (2.4)

As it is noted in [1], the solutions are expressed using Padovan numbers. This system, and
some particular cases of it, were the subject of the papers [19, 45].

If d = c = 0, the system (1.2) becomes

xn+1 =
ayn + b

yn
, yn+1 =

axn + b
xn

, n ∈N0. (2.5)

Again, it is noted in [1] that:
- The system (2.5) is a particular case of the more general system

xn+1 =
ayn + b
cyn + d

, yn+1 =
αxn + β

γxn + λ
, n ∈N0, (2.6)

which was completely solved by Stevic in [33] and the solutions are expressed using a gener-
alized Fibonacci sequence.

- Also, particular cases of System (2.6) were studied in [24, 28, 34, 35].

- If also b = 0, then the solutions of the system (2.5) are given by

{(x0, y0) , (a, a) , (a, a) , ..., } .

3 Proof of the Main Theorem

In order to solve the system (1.2), one needs first to solve the following two homogeneous
fourth-order linear difference equations

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈N0, (3.1)

Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈N0, (3.2)

where the initial values R0, R−1, R−2, R−3, S0, S−1, S−2 and S−3 and the constant coefficients
a, b, c and d are real numbers with d , 0. In fact, one will express the terms of the sequences
(Rn)

+∞
n=−3 and (Sn)

+∞
n=−3 using the sequence (Jn)

+∞
n=0.

The difference equation (3.1) has the same characteristic equation as (Jn)
+∞
n=0, that is the

equation (1.6).
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To solve the difference equation (3.2) using terms of (3.3), one needs the following fourth-order
linear difference equation defined by

jn+4 = −ajn+3 + bjn+2 − cjn+1 + djn, n ∈N0, (3.3)

and the special initial values

j0 = 0, j1 = 0, j2 = 1 and j3 = −a. (3.4)

The characteristic equation of (3.2) and (3.3) is

λ4 + aλ3 − bλ2 + cλ− d = 0. (3.5)

Clearly the roots of (3.5) are −α, −β, −γ and −δ.
Now following the same procedure in solving {Jn}, it is not hard to see that

jn = (−1)n Jn.

Now, it is possible to prove the following result.

Lemma 3.1. One has for all n ∈N0,

Rn = dJn+1R−3 + (cJn+1 + dJn) R−2 + (Jn+3 − aJn+2) R−1 + Jn+2R0, (3.6)

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn) S−2 + (Jn+3 − aJn+2) S−1 − Jn+2S0] . (3.7)

Proof. Assume that α, β, γ and δ are the distinct roots of the characteristic equation (1.6), so

Rn = c′1αn + c′2βn + c′3γn + c′4δn, n ≥ −3.

Using the initial values R0, R−1, R−2 and R−3, one get



1
α3 c′1 +

1
β3 c′2 +

1
γ3 c′3 +

1
δ3 c′4 = R−3

1
α2 c′1 +

1
β2 c′2 +

1
γ2 c′3 +

1
δ2 c′4 = R−2

1
α

c′1 +
1
β

c′2 +
1
γ

c′3 +
1
δ

c′4 = R−1

c′1 + c′2 + c′3 + c′4 = R0,

(3.8)
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after some calculations using the Cramer method one get

c′1 =
βγδα3

(δ− α)(γ− α)(β− α)
R−3 −

(γβ + γδ + βδ)α3

(δ− α)(γ− α)(β− α)
R−2

+
(β + γ + δ)α3

(δ− α)(γ− α)(β− α)
R−1 −

α3

(δ− α)(γ− α)(β− α)
R0

c′2 = − αγδβ3

(δ− β)(γ− β)(β− α)
R−3 +

(γα + γδ + αδ)β3

(δ− β)(γ− β)(β− α)
R−2

− (α + γ + δ)β3

(δ− β)(γ− β)(β− α)
R−1 +

β3

(δ− β)(γ− β)(β− α)
R0

c′3 =
αβδγ3

(δ− γ)(γ− β)(γ− α)
R−3 −

(αβ + αδ + βδ)γ3

(δ− γ)(γ− β)(γ− α)
R−2

+
(α + β + δ)γ3

(δ− γ)(γ− β)(γ− α)
R−1 −

γ3

(δ− γ)(γ− β)(γ− α)
R0

c′4 = − αβγδ3

(δ− γ)(δ− β)(δ− α)
R−3 +

(γα + γβ + αβ)δ3

(δ− γ)(δ− β)(δ− α)
R−2

− (α + β + γ)δ3

(δ− γ)(δ− β)(δ− α)
R−1 +

δ3

(δ− γ)(δ− β)(δ− α)
R0

that is,

Rn =

(
βγδα3

(δ− α)(γ− α)(β− α)
αn − αγδβ3

(δ− β)(γ− β)(β− α)
βn +

αβδγ3

(δ− γ)(γ− β)(γ− α)
γn

− αβγδ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−3

+

(
− (γβ + γδ + βδ)α3

(δ− α)(γ− α)(β− α)
αn +

(γα + γδ + αδ)β3

(δ− β)(γ− β)(β− α)
βn − (αβ + αδ + βδ)γ3

(δ− γ)(γ− β)(γ− α)
γn

+
(γα + γβ + αβ)δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−2

+

(
(β + γ + δ)α3

(δ− α)(γ− α)(β− α)
αn − (α + γ + δ)β3

(δ− β)(γ− β)(β− α)
βn +

(α + β + δ)γ3

(δ− γ)(γ− β)(γ− α)
γn

− (α + β + γ)δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−1

+

(
− α3

(δ− α)(γ− α)(β− α)
αn +

β3

(δ− β)(γ− β)(β− α)
βn − γ3

(δ− γ)(γ− β)(γ− α)
γn

+
δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R0.

Rn = dJn+1R−3 + (cJn+1 + dJn) R−2 + (Jn+3 − aJn+2) R−1 + Jn+2R0.

The proof of the other cases is similar and will be omitted.
Let A := −a, B := b, C := −c and D := d then, equation (3.2) takes the form (3.1) and the

equation (3.3) takes the form (3.3). Then analogous to the formula of (3.1) one obtains

Sn = Djn+1S−3 + (Cjn+1 + Djn) S−2 + (jn+3 − Ajn+2) S−1 + jn+2S0.

Using the fact that jn = (−1)n Jn, A = −a and C := −c one get

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn) S−2 + (Jn+3 − aJn+2) S−1 − Jn+2S0] .
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�

Proof of the Main Theorem.
Replacing

xn =
un

vn−1
, yn =

vn

un−1
, n ≥ −2, (3.9)

in system (1.2) one get the following linear fourth-order system of difference equations

un+1 = avn + bun−1 + cvn−2 + dun−3, vn+1 = aun + bvn−1 + cun−2 + dvn−3, n ∈N0, (3.10)

where the initial values u−3, u−2, u−1, u0, v−3, v−2, v−1, v0 are nonzero real numbers.
From (3.10) one has for n ∈N0,{

un+1 + vn+1 = a(vn + un) + b(un−1 + vn−1) + c(vn−2 + un−2) + d(un−3 + vn−3),

un+1 − vn+1 = a(vn − un) + b(un−1 − vn−1) + c(vn−2 − un−2) + d(un−3 − vn−3).

Putting again
Rn = un + vn, Sn = un − vn, n ≥ −3, (3.11)

one obtains two fourth-order homogeneous linear difference equations:

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈N0,

and
Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈N0. (3.12)

Using (3.11), one get for n ≥ −3,

un =
1
2
(Rn + Sn), vn =

1
2
(Rn − Sn).

From Lemma 3.1 one obtains,



u2n−1 =
1
2
[dJ2n(R−3 + S−3) + (cJ2n + dJ2n−1) (R−2 − S−2) + (J2n+2 − aJ2n+1) (R−1 + S−1)

+J2n+1(R0 − S0)] , n ∈N,

u2n =
1
2
[dJ2n+1(R−3 − S−3) + (cJ2n+1 + dJ2n) (R−2 + S−2) + (J2n+3 − aJ2n+2) (R−1 − S−1)

+J2n+2(R0 + S0)] , n ∈N0,

(3.13)



v2n−1 =
1
2
[dJ2n(R−3 − S−3) + (cJ2n + dJ2n−1) (R−2 + S−2) + (J2n+2 − aJ2n+1) (R−1 − S−1)

+J2n+1(R0 + S0)] , n ∈N,

v2n =
1
2
[dJ2n+1(R−3 + S−3) + (cJ2n+1 + dJ2n) (R−2 − S−2) + (J2n+3 − aJ2n+2) (R−1 + S−1)

+J2n+2(R0 − S0)] , n ∈N0.

(3.14)

Substituting (3.13) and (3.14) in (3.9), one get for n ∈N0,

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1)

R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3)

R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

dJ2n+1 + (cJ2n+1 + dJ2n)
R−2 − S−2

R−3 + S−3
+ (J2n+3 − aJ2n+2)

R−1 + S−1

R−3 + S−3
+ J2n+2

R0 − S0

R−3 + S−3

,

(3.15)
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x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2)

R−2 + S−2

R−3 − S−3
+ (J2n+5 − aJ2n+4)

R−1 − S−1

R−3 − S−3
+ J2n+4

R0 + S0

R−3 − S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1)
R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3)

R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

,

(3.16)

y2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1)

R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3)

R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

dJ2n+1 + (cJ2n+1 + dJ2n)
R−2 + S−2

R−3 − S−3
+ (J2n+3 − aJ2n+2)

R−1 − S−1

R−3 − S−3
+ J2n+2

R0 + S0

R−3 − S−3

,

(3.17)
and

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2)

R−2 − S−2

R−3 + S−3
+ (J2n+5 − aJ2n+4)

R−1 + S−1

R−3 + S−3
+ J2n+4

R0 − S0

R−3 + S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1)
R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3)

R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

.

(3.18)
One has

x−2 =
u−2

v−3
=

R−2 + S−2

R−3 − S−3
, x−1 =

u−1

v−2
=

R−1 + S−1

R−2 − S−2
, x0 =

u0

v−1
=

R0 + S0

R−1 − S−1
, (3.19)

y−2 =
v−2

u−3
=

R−2 − S−2

R−3 + S−3
, y−1 =

v−1

u−2
=

R−1 − S−1

R−2 + S−2
, y0 =

v0

u−1
=

R0 − S0

R−1 + S−1
. (3.20)

From (3.19), (3.20) one get,
R−1 + S−1

R−3 + S−3
=

R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= x−1y−2,

R0 − S0

R−3 + S−3
=

R0 − S0

R−1 + S−1
× R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= y0x−1y−2,

(3.21)


R−1 − S−1

R−3 − S−3
=

R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= y−1x−2,

R0 + S0

R−3 − S−3
=

R0 + S0

R−1 − S−1
× R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= x0y−1x−2.

(3.22)

Using (3.15), (3.16), (3.17), (3.18), (3.21) and (3.22), one obtains the closed form of the solutions
of the system (1.2), that is for n ∈N0, one has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2) x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,


y2n+1 =

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4) x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2
.
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Remark 3.2. - The content of the present paper was posted on arXiv on 31.10.2019, ref.
arXiv:1910.14365.

- Some parts of the results of this paper were used in the reference [2] in which the authors
have generalized the system (1.2).
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