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Abstract. In this work, we study a nonlinear inverse problem for an elliptic partial dif-
ferential equation known as the Calderón problem or the inverse conductivity problem.
We give a quick survey on the reconstruction question of conductivity from measure-
ments on the boundary, by covering the main currently known results regarding the
isotropic problem with full data in two and higher dimensions. We present Nachman’s
reconstruction procedure and summarize the theoretical progress of the technique to
more recent results in the field. An open problem of significant interest is proposed to
check whether extending the method for Lipschitz conductivities is possible.
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1 Introduction

The present paper aims to summarize some reconstruction results from boundary measure-
ments for less regular conductivities in the inverse conductivity problem, which has been
developed for over 30 years and provides references for further research and practical applica-
tions on the topic. The Calderón problem [15] asks to recover a conductivity of a domain from
measurements that are taken on the boundary. For a formal definition, let Ω ⊂ Rn, n ≥ 2 be
a bounded domain with sufficiently smooth boundary ∂Ω, and let γ be a positive real-valued
function representing the electrical conductivity of Ω such that for almost every x ∈ Ω and
for a constant c0 > 0, the condition

γ(x) ≥ c0, (1.1)

is satisfied. The application of a voltage ψ ∈ H1/2(∂Ω) on the boundary induces an electrical
potential w ∈ H1(Ω) in the interior of Ω, where w is the unique weak solution of the following
elliptic boundary value problem {

∇ · γ∇w = 0 in Ω,
w = ψ on ∂Ω.

(1.2)
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In this case, the Dirichlet-to-Neumann map (DN map) relating the boundary voltage ψ

(Dirichlet data) to the flux at the boundary γ ∂w
∂ν (Neumann data) is defined as follows

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω),

ψ 7→ Λγ(ψ) = γ
∂w
∂ν

∣∣∣∣
∂Ω

,

where ∂
∂ν is the outward normal derivative at ∂Ω.

In this paper, we consider the Calderón problem of reconstructing a conductivity from
measurements on the boundary. Since the motivation to reconstruct a conductivity comes
from its uniqueness, we should first ask if it is possible to determine γ from the knowledge of
Λγ, i.e., whether the map γ 7→ Λγ is injective? In 1980, Alberto Calderón, who proposed the
problem, gave a positive answer. He proved in his pioneer paper [15] that for γ a perturbation
of the identity, the injectivity of the linearized inverse problem holds. For n ≥ 3, Sylvester
and Uhlmann [42] were the first to show uniqueness for C2 conductivities. They reduced
the problem to a similar one for a Schrödinger equation. This reduction is based on the
well-known Liouville transformation: if z is a weak solution of the conductivity equation
∇ · γ∇z = 0, then w = γ1/2z is a solution to the Schrödinger equation (−∆ + q)w = 0,
where the potential q = γ−1/2∆γ1/2. Under the standard assumption that 0 is not a Dirichlet
eigenvalue for the Schrödinger equation, and for q ∈ L∞(Ω), ψ ∈ H1/2(∂Ω), they considered
the following Dirichlet problem {

−∆w + qw = 0 in Ω,
w = ψ on ∂Ω.

(1.3)

The DN map associated with q is well-defined from H1/2(∂Ω) into H−1/2(∂Ω) by ψ 7→
Λq(ψ) =

∂w
∂ν

∣∣∣
∂Ω

. The idea of Sylvester and Uhlmann was to look for special solutions w(x, ζ), ζ ∈
Cn, ζ · ζ = 0 satisfying (−∆ + q)w = 0, which are asymptotically exponential, i.e., w ∼ eiζ.x

when |ζ| → ∞. The functions w(x, ζ) = eiζ.x(1 + yζ(x)) are called complex geometrical optics
solutions (CGOs), where yζ(x) ∈ H1(Ω) is a correction term that is needed to transit from an
approximate solution to the exact one by taking |ζ| → ∞. Their result inspired many authors
to find the lowest regularity condition on the conductivity under which uniqueness holds.
More recent uniqueness results, and the used techniques are listed in table 1.1.

Table 1.1: Recent uniqueness results for n ≥ 3.

n γ Techniques Ref
≥ 3 W3/2,2n+ Approximation argument [14]
≥ 3 C1, W1,∞ with ||∇ log γ||L∞ small Bs, averaging argument [23]
≥ 3 W1,∞ Bourgain’s spaces (Bs) [16]

3 H3/2+ Standard Sobolev spaces [36]
3,4 W1,n Bs, Lp harmonic analysis [22]
5,6 W1+(1−θ)(1/2−2/n),n/(1−θ), θ ∈ [0, 1) Bs, Lp harmonic analysis [22]
5 W41/40+,5 Bilinear estimate [24]
6 W11/10+,6 Bilinear estimate [24]

≥ 5 W1+ n−5
2p +,p, p ∈ [n, ∞) Bilinear estimate [39]
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The observation of the table makes us wonder how much it would be interesting to check
whether it is possible to prove Brown’s conjecture [11], which affirms that in three and higher
dimensions γ ∈ W1,n is the minimum possible regularity for which uniqueness holds. Notice
that the approaches used in [22, 24, 36] are not useful for reconstructing γ, because the proofs
there are not constructive, meaning that they did not give a procedure to recover γ from Λγ.

The two-dimensional problem is also of significant interest but differs mainly from the
higher dimensional one so that different techniques are used to address this case. Nachman
[33] was the first who proved uniqueness for γ ∈W2,d, d > 1 in the plane. This last regularity
assumption was relaxed by Brown-Uhlmann [12] to γ ∈ W1,2+, and by Astala-Päivärinta [8]
to γ ∈ L∞.

Once uniqueness holds, one can be interested in the reconstruction problem. In practice,
Nachman’s reconstruction procedure was widely applied in the implementation of algorithms
[40]. For example, in medical imaging technology, the electrical impedance tomography (EIT)
with several applications, including the detection of breast cancer and pulmonary imaging.
See the review papers [11, 25] for more detailed arguments on this technique.

While the current paper deals mainly with the entire data problem, we note that the
partial data problem is subject to huge advances. The partial data type problem aims to
reduce as much as possible the part of the boundary, where measurements are taken, and
excitations on the studied body are imposed because, from a realistic view, it is not practical
to consider measurements on the whole boundary of some domain. We refer the reader to
the excellent survey paper [26] by Kenig and Salo on the recent progress in this problem.
For the reconstruction results with partial data, we give further references [3, 5, 35]. When
γ depends on direction, we are in the presence of the anisotropic Calderón problem. In
the plane, uniqueness was shown for L∞ anisotropic conductivities in [7]. For n ≥ 3, this
problem is also called Calderón’s inverse problem on Riemannian manifolds, and as Lassas
and Uhlmann pointed out in [30], this is a geometrical problem that has up to now remained
open.

We aim to offer the interested reader a short introduction to the reconstruction problem.
We hope that this work could inspire a different way of proposing a method of reconstructing
the conductivity. We have not attempted to be exhaustive in this introduction. In particular,
we have neglected stability and numerical results and closely related inverse problems. As
the research field on the Calderón problem is too broad, we refer the reader to the review
works [4, 9, 17, 25, 46] on the general problem.

The rest of this article is organized in the following way: the applied notation and back-
ground knowledge are summarized in Section 2. In Section 3, we give the precise statements
of the known reconstruction results. Section 4 discusses the proof strategy. Section 5 contains
an open problem.

2 Preliminaries

Throughout this article

• Ω denotes a bounded open set of Rn with smooth boundary ∂Ω.

• n ≥ 2 denotes the space dimension.
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• q : Ω→ R denotes an electrical potential.

• dS denotes the surface on ∂Ω.

• S(Rn) denotes Schwartz space.

• S ′(Rn) denotes the space of tempered distributions.

• 〈, 〉 denotes the dual pairing between H1/2(∂Ω) and H−1/2(∂Ω).

• D denotes the unit disc in C.

• BR(0) denotes the closed ball with center 0 and radius R > 0.

• a . b denotes that it exists a constant c > 0 such that a ≤ cb.

2.1 Fourier transform and function spaces

For ξ ∈ Rn, the applied notation for the Fourier transform is

ŵ(ξ) =
∫

Rn
e−iξ.xw(x)dx.

The inverse Fourier transform is noted by

w̌(x) =
1

(2π)n

∫
Rn

eiξ.xw(ξ)dξ.

For s ∈ R, we define Sobolev spaces Hs(Rn) via Fourier transform as follows:

Hs(Rn) = {w ∈ S ′(Rn) : 〈ξ〉sŵ ∈ L2(Rn)},
where 〈ξ〉 = (|ξ|2 + 1)1/2.
The associated norm is
‖w‖Hs(Rn) = ‖〈ξ〉sŵ‖L2(Rn).

Recalling the Schrödinger equation from the problem (1.3), substituting with w(x, ζ) = eiζ.x(1+
yζ(x)), we deduce an equivalent equation for yζ , precisely

4ζyζ = (∆ + 2iζ · ∇)yζ = q(1 + yζ) in Ω.

The right inverse of the differential operator 4ζ is defined by

4̂−1
ζ f (ξ) = pζ(ξ)

−1 f̂ (ξ). (2.1)

with symbol
pζ(ξ) = −|ξ|2 + 2iζ · ξ.

Using this symbol, we can define the space Ẋb
ζ with the associated norm

||w||Ẋb
ζ
= |||pζ(ξ)|bŵ(ξ)||L2 ,

and the inhomogeneous spaces Xb
ζ with the associated norm

||w||Xb
ζ
= ||(|ζ|+ |pζ(ξ)|)bŵ(ξ)||L2 .

In Section 5, we will only need to use the exponent b = ±1/2. Notice that those two spaces
were firstly considered by Haberman and Tataru [23] in the spirit of Bourgain’s spaces, see
[10, 45].
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2.2 DN map and integral identity

From the variational formulation of the problem (1.2), it follows the following Alessandrini
identity [2].

〈Λγψ, φ〉 =
〈

γ
∂w
∂ν

, φ

〉
=
∫

Ω
γ∇w∇zdx ∀ψ, φ ∈ H1/2(∂Ω),

where z ∈ H1(Ω), z
∣∣
∂Ω = φ.

By recalling from the introduction the DN map Λq associated with (1.3), we can give
another useful identity when q = γ−1/2∆γ1/2. It is easy to check that the DN map Λq can be
obtained from the DN map Λγ, where the explicit expression relating those two maps is given
by

Λq f = γ−1/2Λγ(γ
−1/2 f ) +

1
2

γ−1 ∂γ

∂ν
f
∣∣∣∣
∂Ω

. (2.2)

One other important relation is the following integral identity that relates boundary measure-
ments with interior potentials.

〈
(Λq1 −Λq2)w1

∣∣
∂Ω, w2

∣∣
∂Ω

〉
=
∫

Ω
(q1 − q2)w1w2 dx, (2.3)

for q ∈ L∞(Ω) and wj ∈ H1 uniquely solve −∆wj + qjwj = 0, for j = 1, 2.

2.3 Faddeev’s Green’s function and layer operator

While the equation (2.1) implicitly gives the right inverse Gζ of 4ζ , the following explicit
functions

gζ(x) =
1

(2π)n

∫
Rn

eiξ.x

pζ(ξ)
dξ, Gζ(x) = eiζ.xgζ(x), (2.4)

are the Faddeev’s Green’s functions for (∆ + 2iζ.∇) and the Laplacian, respectively.
Now, we introduce some useful operators, which will be needed later in Section 4. Using

the family Gζ of Green’s functions for x ∈ Rn\∂Ω, we define the following layer potentials.
Single layer potential:

Sζ f (x) =
∫

∂Ω
Gζ(x, y) f (y)dS(y). (2.5)

Double layer potential:

Dζ f (x) =
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f (y)dS(y).

We define also for x ∈ ∂Ω, the boundary double layer potential:

Bζ f (x) = p.v.
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f (y)dS(y). (2.6)
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3 Reconstruction results

Throughout this section, we try to give precise statements of the known reconstruction results.
We will split the section into two subsections, depending on the study domain dimension.
Notice that the used approach for the two-dimensional problem, which is essentially based
on complex analysis, is quite different from the higher-dimensional problem. Thus, we first
present the known reconstruction results in the plane.

3.1 Reconstruction in two dimensions

For the two-dimensional problem, Novikov and Nachman were the first to answer the recon-
struction question in [38] and [33]. Nachman’s result is presented as follows:

Theorem 3.1. [33] Let Ω ⊂ R2 be an open, bounded, smooth domain, and let γ ∈ W2,p(Ω), p > 1.
Then there is a procedure to reconstruct γ uniquely from Λγ.

Inspired by the uniqueness proof of Brown and Uhlmann [12], Knudsen and Tamasan [28]
applied the ∂̄-method to produce a reconstruction algorithm for γ ∈ W1,p, p > 2. Their result
is considered as a sharp improvement over the last one due to Nachman.

Theorem 3.2. [28] Let Ω ⊂ R2 be a bounded, smooth domain, and let 0 < ς < 1 with γ ∈
W1+ς,p(Ω), p > 2 satisfying (1.1). Then γ can be reconstructed on Ω from the knowledge of Λγ.

In 2018 Lytle, Perry, and Siltanen [31] proved that Nachman’s reconstruction method still
holds for L∞ conductivities, which are 1 in a neighborhood of the boundary. Here we present
their main Theorem, and further details on their work are given in Section 4.

Theorem 3.3. [31] Let γ ∈ L∞(D) satisfying (1.1), and suppose that the condition

there is a x0 ∈ (0, 1)such that γ = 1 for |x| ≥ x0, (3.1)

holds. Then, for each ζ ∈ C, there exists a unique w|∂D ∈ H1/2(∂D) such that

w|∂D = eiζ.x|∂D − Sζ(Λγ −Λ1)w|∂D. (3.2)

By abuse of notation, the map Λ1 = Λ0 is the DN map for harmonic functions on D that
correspond to q = 0 and γ = 1.

3.2 Reconstruction in higher dimensions

In 1988 for higher dimensions, Nachman [34] and Novikov [37] were also the first who pro-
vided a constructive procedure to recover γ ∈ C1,1 from the knowledge of Λγ.

Theorem 3.4. [34] Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with a C1,1 boundary, and let γ ∈
C1,1(Ω̄) satisfying (1.1). Then there is a procedure to reconstruct γ uniquely from Λγ.

Novikov [37] has independently shown a similar result to the previous one given by Nach-
man. He was the first who introduced the key ingredient of the boundary integral equation,
which will be explained later in the next section.

Based on the uniqueness result of Haberman and Tataru [23], Nachman’s procedure was
followed by García and Zhang in [20] to reconstruct C1, or Lipschitz conductivities with
|∇ log γ| sufficiently small.
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Theorem 3.5. [20] Let Ω be a bounded Lipschitz domain on Rn, n ≥ 3, and let γ be a strictly positive
real-valued function on Ω satisfying (1.1).

1. γ ∈ C1(Ω̄).

2. γ ∈ Lip(Ω), such that |∇ log γ(x)| < δΩ,n with δΩ,n a constant.

If 1 or 2 is satisfied, then γ can be reconstructed on Ω from the knowledge of Λγ.

In 2020, Tarikere extended the uniqueness result of Brown and Torres [14] to prove the
validity of Nachman’s method for W3/2,2n conductivities.

Theorem 3.6. [44] Let Ω be a bounded Lipschitz domain on Rn, n ≥ 3, and let γ ∈W3/2,2n(Ω) be a
strictly positive real-valued function on Ω satisfying (1.1) with γ ≡ 1 in a neighborhood of ∂Ω. Then
γ can be reconstructed from Λγ.

While all the previous results concern the full data problem, Nachman was also interested
in the reconstruction of the partial data type problem. Based on the well-known Carleman
estimate approach in [27], Nachman and Street obtained a reconstruction proof with partial
data measurements on a slightly overlapping partition of the boundary ∂Ω. The reader is
referred to ( [35], Theorem 1.3) for the precise result. Their result was recently approved by
Garde [21] to piecewise constant layered conductivities. Grade’s reconstruction method only
relies on the monotonicity principles of the local DN map, and therefore lends well to efficient
numerical implementation models.

4 Proof strategy

In the present section, we briefly review the proof of the reconstruction results described above
and the main theoretical tools used therein. The two-dimensional problem is quite different
from the higher dimensional case. For example, it is no longer over-determined. To show
that, we propose the following explanation. Since it is a linear operator from H1/2(∂Ω) to
H−1/2(∂Ω), the DN map Λγ can be expressed in terms of the Schwartz kernel K : ∂Ω× ∂Ω −→
R by

Λγ f (x) =
∫

∂Ω
K(x, y) f (y)dS(y). (4.1)

From one side, it is known that the dimension of ∂Ω is n − 1. Then, the kernel K is
a function of 2(n − 1) variables. On the other side, the conductivity γ, which we wish to
recover, is defined in an n-dimensional domain. Thus, for n = 2, the Calderón problem in the
plane is formally well-determined and fairly well-understood.
From (4.1), it is clear that for n ≥ 3, the inverse problem is formally over-determined since
the known data has more degree of freedom than the quantity γ, which we are trying to
recover. That means that sometimes (but certainly not always) the problem may be easier to
manipulate in higher dimensions.
The precedent motivates in some way that, to deal with the two-dimensional problem, we
need to invoke a different technique than the one used when n ≥ 3.
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4.1 Preliminary reductions

To simplify the problem, we use the following two types of reductions. On the one hand,
Nachman ( [33], Section 6) proceeds to a reduction of γ in a neighborhood of ∂Ω. His idea
was to reduce the Calderón problem to a problem having a constant γ ≡ 1 near ∂Ω, then to
extend γ outside the study domain Ω such that the initial regularity assumption is conserved.
Thus, solving the extended problem on the large domain means that the original problem on
Ω is implicitly solved.

The main idea behind this reduction is based on the following step of reconstructing the
boundary value of the unknown conductivity and its derivative from the DN map.

4.1.1 Reconstruction at the boundary

From identity (2.2), it is clear that to find the value of Λq, we need a procedure to recover
the values of γ and ∂γ

∂ν on the boundary ∂Ω from Λγ. Thus, we deduce the importance of
boundary determination, which depends on the regularity of both the domain boundary and
the conductivity itself. For the case of smooth conductivities in smooth domains, Kohn and
Vogelius [29] proved that Λγ determines γ and all its normal derivatives on the boundary.
More results and approaches to boundary determination of the conductivity were shown
in [1, 43]. In particular, Brown [13] proved that we could recover the boundary values of a
W1,1, or a C0 conductivity from the knowledge of Λγ.

In the appendix of [20], the gradient at the boundary of a C1 conductivity in a Lipschitz
domain was recovered by Brown in collaboration with García and Zhang. In all ways, this
boundary determination is based on testing the DN map against highly oscillatory functions
at the domain boundary.
On the other hand, we saw in the introduction that the conductivity problem (1.2) could be
reduced to the Schrödinger problem (1.3) by a well-known transformation under the condition
that the conductivities are sufficiently regular (which is the case here). The desired conclusion
behind those reductions is to possess a potential q having a compact support in Ω.

4.2 Nachman’s method

After reducing the inverse conductivity problem to the inverse problem for a Schrödinger
equation, the reconstruction method of Nachman could be decomposed into three steps. First,
we extend q to be 0 in R2 outside the study domain. The second step consists of computing
the scattering transform t of the Schrödinger equation associated with the extended potential q
from the given DN map. Finally, the ∂-method permits solving the scattering problem, which
is used to calculate the value of γ.
Below, we will give a discerption of the reconstruction process in the plane [33].
We identify R2 with the complex plane C. For q = γ−1/2∆γ1/2, Nachman used Faddeev’s [18]
CGOs in the problem (1.3) to get{

−∆w + qw = 0,
lim|x|→∞ e−iζ.xw(x, ζ)− 1 = 0.

(4.2)

We define the useful complex derivative operators ∂̄ and ∂ as follows:

∂̄ =
1
2
(

∂

∂x1
+ i

∂

∂x2
), ∂ =

1
2
(

∂

∂x1
− i

∂

∂x2
).
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By substituting with a(x, ζ) = e−iζ.xw(x, ζ) in (4.2), we get{
∂̄(∂ + ix)a = 1

4 qa,
lim|x|→∞ a = 1.

(4.3)

Then, one can use (4.3) to define the scattering transform t

t(ζ) =
∫

R2
bζ(x)q(x)a(x, ζ)dx, (4.4)

where bζ(x) = ei(ζ.x+ζ.x).
Nachman showed that the solutions a(x, ζ) solve{

∂̄ζ a = t(ζ)
4πζ b−ζ(x)ā,

lim|ζ|→∞ a = 1.
(4.5)

Since we know from the preceding subsection that the used reduction guarantees that q has a
compact support in Ω, then (4.3) and (4.4) can be reduced to the following boundary integral
equations, respectively.

w|∂Ω = eiζ.x|∂Ω − Sζ(Λq −Λ0)w|∂Ω. (4.6)

t(ζ) =
∫

∂Ω
eiζ̄.x̄(Λq −Λ0)w|∂Ω dS. (4.7)

Where Sζ is defined in (2.5). As was mentioned in Section 3, the boundary integral identity
(4.6) was developed for the first time by Novikov [37].
Finally, by giving the value of t from (4.7), we can solve (4.5) to recover the conductivity from
the identity

γ(x) = a(x, 0)2. (4.8)

In the plane, we recapitulate Nachman’s reconstruction method for γ ∈ W2,p in the following
four steps.

1. Solve (4.6) for w|∂Ω.

2. Calculate the value of t from (4.7).

3. Solve the ∂̄ζ-equation (4.5).

4. Recover γ from (4.8).

Remark 4.1. • The Knudsen-Tamasan result in Theorem 3.2 for a less regular γ was pro-
posed by following the uniqueness proof of Brown and Uhlmann [12], and by making
every step in their proof constructive.

• The reconstruction algorithm of Knudsen-Tamasan [28] is a generalization of the above-
summarized one, and the proof steps are almost the same. For other kinds of algorithms
based on a linearized or iterative schema, see [9, 17].
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4.3 Beltrami equation

The construction of CGOs viewed before relies on the available regularity assumption on γ.
Another construction that requires no smoothness on γ was introduced in [8] for γ ∈ L∞

strictly positive, using the Beltrami equation approach.
Next, we describe the analysis steps of the reconstruction process proposed by Lytle, Perry,
and Siltanen in Theorem 3.3.
Without loss of generality, we assume that the domain Ω is the unit disc D and γ = 1 in
a neighborhood of D. More precisely, we consider that condition (3.1) holds. The Beltrami
coefficient µ used by Astala and Päivärinta [8] is defined by

µ =
1− γ

1 + γ
,

satisfying |µ(x)| < 1, and having a compact support since that the conductivity is set to
be equal to one outside a compact set. Then, for any function w ∈ H1(D) that solves the
conductivity equation given in (1.2), there exists w̃ ∈ H1(D) a real-valued function named the
conjugate harmonic function of w such that the Beltrami equation

∂̄ẇ = µ∂ẇ (4.9)

has a solution ẇ = w + iw̃.
The key ingredient in the analysis in [31] is this last Beltrami equation (4.9), which admits
CGOs. Those CGOs can be used to define an associated scattering transform, which is iden-
tified as a natural analog of Nachman’s one (4.7). This transform remains well-defined under
the weaker regularity assumption µ ∈ L∞(Ω) by Theorem 4.2 from [8]. Theorem 3.3 combined
with Corollary 18.1.2 from [6] about the uniqueness of CGOs for the conductivity equation,
establish the unique solvability of the integral equation (3.2).
Notice that the followed strategy to prove Theorem 3.3 is to show the compactness of the
integral operator Tζ = Sζ(Λγ − Λ1) from H1/2(∂D) to H−1/2(∂D). Then, to prove that the
integral equation (3.2) is uniquely solvable, it suffices by Fredholm theory, to show that the
only vector υ ∈ H1/2(∂D) with Tζυ = −υ is the zero vector.
For more efficient algorithms for the computation of CGOs ẇ, and numerical examples, see
( [32], Chapter 14, page: 215-221). Interested readers are referred to ( [32], Chapter 15), and the
references therein for readings on the D-bar method, which is based on Nachman’s result [33].

4.4 Boundary integral equation

In the present subsection, we will describe more carefully each step in the reconstruction pro-
cedure in higher dimensions. For n ≥ 3, the valuable tool of CGOs, which was presented in
the introduction to show the uniqueness in Calderón problem in the work of Sylvester and
Uhlmann [42], was used later by Nachman in Theorem 3.4 and by Novikov in [37] indepen-
dently to reconstruct the conductivity γ. We will describe Nachman’s idea [34] as follows. As
it was already seen in subsection 4.1, we can give the boundary reconstruction of γ and ∂γ

∂ν

from the DN map. Then, if Λγ is knew, Λq is calculated from identity (2.2). Hence, the prob-
lem is reduced to the reconstruction of q from Λq. Once we have the value of q = γ−1/2∆γ1/2,
we can solve the following problem to deduce γ.{

−∆w + qw = 0 in Ω,
w = γ1/2 on ∂Ω.
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Now, let q1 = q, q2 = 0 in the integral identity (2.3). Then we get∫
Ω

qw1w2 dx =
∫

∂Ω
(Λq −Λ0)(w1

∣∣
∂Ω)w2

∣∣
∂Ω dS, (4.10)

where w1, w2 ∈ H1(Ω) solves −∆w1 + qw1 = 0, and −∆w2 = 0, respectively.
In the following, we use expression (4.10) and appropriate CGOs to reconstruct the Fourier
transform of q. We consider ξ ∈ Rn, ξ , 0, and we define the set B by B = {ζ j ∈ Cn : ζ j · ζ j =

0, |ζ1| = |ζ2| = h, ζ1 + ζ2 = ξ, j = 1, 2}. The application of the argument from [42] ensures
the existence of CGOs w1 = eiζ1.x(1 + yζ1) for −∆w1 + qw1 = 0, with the correction term yζ1

decaying to zero when |ζ1| → ∞. Furthermore, the appropriate choice of ζ2.ζ2 = 0 implies
that ∆eiζ2.x = 0.
By substituting in (4.10) and by using the decay property of yζ1 , we have

q̂(ξ) = lim
h→∞

∫
∂Ω

(Λq −Λ0)(w1
∣∣
∂Ω)e

iζ2.x∣∣
∂Ω dS. (4.11)

From (4.11), we deduce that the Fourier transform of q for ξ , 0 can be recovered from the
DN map if w1|∂Ω is knew. We know that q is compactly supported, then q̂(ξ) is continuous
so that q̂(0) can be determined by continuity [41]. Hence, q̂(ξ) is known as a tempered distri-
bution, and the potential q can be recovered in Rn by simply inverting the Fourier transform.
Therefore, it is a question to get the value of w1|∂Ω to recover q̂(ξ).
The aim now is to find a method to calculate w1

∣∣
∂Ω. The idea is to look at the exterior problem,

which means that we extend q to Rn to be q = 0 outside the study domain Ω. Since q = 0
in Rn\Ω̄, the equation (−∆ + q)w1 = 0 in Rn becomes −∆w1 = 0 in Rn\Ω̄. Therefore, the
function w1 is a solution to the following exterior problem.

−∆w1 = 0 in Rn\Ω̄,
w1|∂Ω = fζ ,

∂w1
∂ν |∂Ω = Λq fζ .

(4.12)

For a fixed R > R0 such that Ω ⊂ BR(0), it is known from [34] that if w1 satisfies the following
analog of Sommerfeld radiation condition

lim
R→∞

∫
|y|=R

(
Gζ(x, y)

∂(w1 − eiζ.x)

∂ν(y)
− (w1 − eiζ.x)

∂Gζ(x, y)
∂ν(y)

)
dS(y) = 0, (4.13)

then, by using Green’s formula in (4.12), we can show that the boundary value w1|∂Ω can
be characterized as the unique solution fζ of the following boundary integral equation of
Fredholm type.

eiζ.x − Sζ(Λq −Λ0) fζ = fζ on ∂Ω. (4.14)

As we notice that the operator on the left-hand side of the boundary integral equation (4.14),
depends on the DN map and other known quantities, we can recover the value of w1|∂Ω by
solving (4.14). Moreover, (4.14) is an inhomogeneous integral equation for fζ having a unique
solution fζ ∈ H3/2(∂Ω). By Fredholm alternative, the uniqueness of the solution follows from
the fact that the homogeneous equation

−Sζ(Λq −Λ0) fζ = fζ on ∂Ω,

only has the zero solution, which follows by its turn from the uniqueness of the CGOs.
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Remark 4.2. • Nachman derived the slight different type of boundary integral equation:

eiζ.x − (SζΛq − Bζ −
1
2

I) fζ = fζ on ∂Ω, (4.15)

where the operator Bζ is defined in (2.6). Since we can easily show that SζΛ0 = Bζ +
1
2 I,

it is clear that the expressions (4.15) and (4.14) are equivalent.

• Because it is complicated to check that the condition (4.13) is satisfied by w1, Nachman’s
idea was to construct from (4.15) CGOs to the Schrödinger equation (−∆ + q)w = 0 in
Rn, that automatically satisfy condition (4.13), then to prove that those CGOs coincide
with the ones constructed by Sylvester and Uhlmann [42].

Now, we turn to give the sketch of the proof of theorems 3.5 and 3.6. Mainly, the strategy
used there was to follow the discussed Nachman’s method for Theorem 3.4.

Due to the weak assumption regularity on γ in Theorem 3.5 (γ ∈ C1 or γ Lipschitz with
|∇ log γ(x)| < δΩ,n) and Theorem 3.6 (γ ∈ W3/2,2n), some changes are made in the above
steps. The proof outline consists of constructing CGOs to the conductivity equation or the
Schrödinger equation in Rn, respectively, from the boundary integral-equation on the bound-
ary. Then, to show that these solutions coincide with the ones constructed by Haberman-
Tataru [23] and Brown-Torres [14], respectively. Note that the reconstruction presentation
in [44] follows mainly the analysis and notations from ( [19], Chapter 4.7), which focuses on
reconstructing γ ∈ C2(Ω).
We know that by plugging w(x, ζ) = eiζ.x(1 + yζ(x)) in the Schrödinger equation, we get

(−∆− 2iζ · ∇)yζ(x) + q(x)yζ(x) = −q(x) in Rn. (4.16)

By convolving (4.16) with gζ which is defined in (2.4), we obtain the Lippmann-Schwinger-
Faddeev integral equation

(I + gζ ∗ q)yζ(x) = gζ ∗ q. (4.17)

The last equation (4.17) is equivalent to the following integral equation

w(x, ζ) +
∫

Rn
Gζ(x, y)q(y)w(y, ζ)dy = eiζ.x, (4.18)

where Gζ is defined in (2.4). It is clear that the combination of (2.3) and (4.18) gives (4.14) for
w. Moreover, the homogenous version of (4.18) is

w(x, ζ) =
∫

Rn
Gζ(x, y)q(y)w(y, ζ)dy. (4.19)

The analysis in [20] and [44] showed that the operator at the right-hand side of (4.19) is
a contraction, provided the corresponding CGOs are constructed for sufficiently large |ζ|.
Finally, the problem is reduced to a fixed point problem.

5 Open problem, conjecture, and discussion

In the precedent sections, some methods for conductivity reconstruction were reviewed. Those
methods were analyzed, compared, and their steps were summarized. The results show that
all the cited methods are in some way a generalization of Nachman’s (or Novikov’s) method.
Besides, those results can provide a reference to the reconstruction subject of the problem.
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Under the broad research field of Calderón’s problem, we wrote this note to motivate and
draw more attention to the reconstruction topic. Therefore, we hope that something might lie
beyond this paper. In this final section, we propose the following open question and discuss
plausibly research extensions that can be subject to new results in the reconstruction direction
of the problem.

Question. ( Reconstruction of Lipschitz conductivities) If Ω is a bounded Lipschitz domain on
Rn, n ≥ 3, γ ∈ Lip(Ω) a strictly positive real-valued function on Ω satisfying (1.1), with γ ≡ 1 in a
neighborhood of ∂Ω, show that γ can be reconstructed on Ω from the knowledge of Λγ.

Recently, Caro and Rogers [16] used Bourgain’s spaces to prove the uniqueness of Lips-
chitz conductivities in three and higher dimensions. Their result makes us wonder how much
it would be interesting to check whether it is possible to use this uniqueness proof to gener-
alize Nachman’s method to Lipschitz conductivities by taking off the smallness condition on
|∇ log γ| to improve the results of Theorem 3.5. The key ingredient in the uniqueness proof
in [16] for Lipschitz conductivities without a smallness condition is the following a priori
estimate:

||w||X1/2
ζ
. ||(−∆ + 2ζ · ∇+ q)w||X−1/2

ζ
,

for a function w ∈ S(Rn) with support in Ω, and the function spaces X±1/2
ζ were defined in

Section 2. From the last estimate and a standard functional analysis argument, it follows a
key bound on the potential q

||yζ ||X1/2
ζ (Ω) . ||q||X−1/2

ζ
,

for some corrector function yζ . The occurring complication is that the solutions here are local,
but in our case, we need to extend them in some way to Rn. Therefore, we conjecture that the
techniques used until now, which have been reviewed in this survey, have reached some sort
of limit. Thus, we can not follow the contraction mapping approach to apply the fixed point
argument used in the above methods. However, it is straightforward that this problem seems
more complicated and may require new ideas beyond the known techniques to overcome its
difficulties.
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