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Abstract. This work is concerned with coupled semi-linear pseudo-parabolic equa-
tions with memory terms in both equations, associated with the homogeneous Dirichlet
boundary condition. We show that the solution grows exponentially under specific con-
ditions regarding the relaxation functions and initial energy. In order to prove the result,
we use the energy method based on the construction of a suitable Lyapunov function.
The most important behavior of the evolution system is the exponential growth phe-
nomena because of its wide range of applications in modern science, such as chemistry,
biology, ecology, and other areas of engineering and physical sciences.
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1 Introduction
We consider the following boundary value problem:

ut—Au—Aut—i—fotg(t—s)Au (s)ds+ [u|™ 2uy = f1 (w,v), inQx (0,T)
vt—Av—Avt—i—fOth(t—s) Av (s)ds+ || v, = fo (u,0), inQx(0,T)
u(x, t)=0,v(x, t) =0, inadQ) x (0, T)
u(x,0)=uy, v(x, 0) =0, in O,

(1.1)

where () is a bounded domain in R”, n > 1 with smooth boundary d(), m and k are real
positive constants. The relaxation functions g and & satisfying some conditions we suppose
later, and the two functions f; (1,v) and f, (u,v) are given by

{ fi (w,0) = [+ 0 (o) o fuf o] 2. (12)

fo (u,0) = [u+ 0" (u+0) + |u oo
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Recently, Piskin and Ekinci in [15] treated the following system

_ 1.3
v — Ao+ 0|7 20 = fo (u,0). 13

{ up— A+ w7 us = fi (u,0),
They proved the exponential growth of the solution with initial negative energy.
In the absence of |u|" % u; and |0|7 2 v; terms the system (1.3) becomes

{ uy—Au = f1(u,v),
v —Av = fr(u,0).

This type of equation is naturally found in physics, chemistry, biology, ecology, and other areas
of engineering and physical sciences (see [4-6]). Korpusov in [9] has determined sufficient
conditions for the blow-up of a finite time and the solvability of the following generalized
Boussinesq equation

;t(Au—u—|u|pu)—|—u(u+zx)(u—,8):O, (1.4)
with initial boundary value, for «, § > 0 in R3, by concativity method [7,10]. The result is
extended by [20,21]. Based on idea in [3] for the equation (1.5) the authors of [20] proved that
the L” —norm of the solution for (1.4) grows as an exponential function.

up — A — Aug 4 |u™ = |u|P (1.5)

In [16] Polat established a blow up result of the solution with vanishing initial energy in a
bounded domain of R with the absence of the term —Au; in equation (1.5). Many authors
[1,2,8,17] have considered the following initial value problem for the generalized Boussinesq
equation with nonlinear Newmann condition

ut—Au—Aut—Hu]m*Zut = f(u),
u=0, x €l

W o(u)=0,xely,

u(x,0) =up(x), x € Q.

(1.6)

In [2] the authors have established both the existence of the solution and a generalisation
of the energy functions under some restrictions on the initial data. They have also proved
a blow-up result. Ouaoua et al in [13] considered the following nonlinear Kirchhoff type
reaction-diffusion equation

up— M (/w%u) Au+ |u|™ 2wy = ul"?u, (x,t) e Qx(0,T), (1.7)
Q

where M (s) = a+ bs?, a, b and v are positive constants. Under suitable assumptions on
the initial data, they obtained global existence and stability of solutions with positive initial
energy. In the case of the variable exponents, also, Ouaoua and Maouni in [14] considered the
following equation

uy — div (|Vu|"’(x)_2 Vu) Fowlu™ 2y = b u™ 2y inQx(0,T). (1.8)
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They proved blow-up, exponential growth of solution with negative initial energy in the both
case of equation. Messaoudi in [11] proved under suitable conditions on g and p, a blow-up
result for solutions of the semilinear viscoelastic equation

t
1”—mrﬁégU—ﬂAu@wwuzqw%%anx(an, (1.9)

with positive initial energy.
The paper is organized as follows. In section 2, we present the necessary assumptions and
lemmas, while in section 3, we prove the main result.

2 Preliminaries and assumptions

This section will give some notations and statements of assumptions for the relaxation func-
tions. We denote L? (QQ) by L? and H} (Q) by H}. The norm and inner product of L? (Q)) are
denoted by |.||, and (a,b) = [ a (x) b (x) dx respectively.

For the relaxation functions ¢ and & we assume that

(A1) g, h: RT — R* are of class C! and satisfying

g(s)>0,1— [;"g(s)ds =1>0, o1
h(s)>0,1— [;"h(s)ds =k >0, (2.1)

and
g (s),h (s) <0, Vs > 0. (2.2)
(A2)
—1<rifn=1,2,
{—1<r§§gﬁnz3. @3)
Throughout this paper, we use the following notations
/c])t—s/|1/] s)|? duxds.
We can easily verify that
ufy (u,0) +ofa (u,0) =2 (r+2)F(u,0), V(u,0) € R?
where .
F _ (r+2) o) r+2
(u,0) 20+2[’u+w )+ 2b[uo| 2]
Lemma 2.1. [12]: There exist two positive constants co and cq such that
€0 2(r+2) 2(r+2)) < < €1 2(r+2) 2(r+2)

3 Main result and proof

In this section we state and prove our main result. First we state the definition for the strong
solution of the problem (1.1).
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Definition 3.1. A strong solution of the problem (1.1) on Q) x [0, T], is a pair of (u,v) satisfying
2
(u,v) € (C ([0, T];H},) nclo, T];L2> ,(\u|m*2 up, o2 vt) e [L2(Qx[0,1])]

(1 (x,0),0(x,0)) = (uo (x), 00 (x)),

/O-t/Qutlpdxds_/ot/Q/Osg(t—T) Vu (1) Vi (s) dtdxds
+/0f/QVuV1pdxd5_/ot/Qf1 (w,9) ¢dxds+/(;/g|u|m_2uﬂpdxds:0.

and

/Ot/nz;tqydxds_/ot/ﬂ/osh(t—r) Vo (1) Ve (s) drdxds

t ¢ ¢
Vovgdrds — [ [ fo(u,0) paxds + [ [ ol oigtxds = 0.
+/O/Qvgbxs Oﬂfz(uv)¢xs+00\v] vipdxds
forallt € [0,T] and all p,¢ € C ([0, T], H}) .

The energy functional E (t) associated with a solution (u,v) of (1.1) is given by

E0) =5 (1 [ ds) 19+ 5 (1= [ h)ds) Vol + 5 (g0 70
+ % (hoVv) — 2(r1+2) /Q [ufi (u,v) +vfr (u,0)]dx. (3.1)

Lemma 3.2. Let (u,v) be a solution of (1.1), then E (t) is a nonincreasing function for t > 0 satisfying
1
E'(t) = 5 ({8 o Vu) (5)+ (i 0 Vo) (1) = g () | Vu ()] — (1) | Vo (1)]13)
— sl = llonly = [ u" P utax— [ o ofax <, 62

and
E(t) <E(0) <0, Vt>0.

Proof. Multiplying first equation of (1.1) by u; and second by v;, integrating over () and using
integration by parts, we obtain

st | (1= [ s s ) IVul+ (1= [This)ds) 90l
_2(r1+2)/Q[ufl(u’v)+Uf2(u/v)]dx+;/0/otg(t—s)]Vu(t)—Vu(5)|2dsdx
5 o [ =) 1Vu o Pasax 5 [ [n(t=) Vo () - o (s) Pasd
_;/Q/Oth(t—s)wv(t)\zdsdx}

[ 1V - u o) Pasaxt ) [Cge—s)as|vu )3
_;/Q/Oth/(t_s)|Vv(t)_Vz;(s)|2dsdx—i—;/Oth(t—s)dsnvv(t)ng

2.2 k=2 2 2 2
— [ "t — [ ol oddx ]} = el 3,
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then by definition of E (t), we get
1
E (1) = 5 (/0 V) (6) + (1 0 Vo) (1) g (1) [Vu ()3~ 1 1) [ Vo (8))
— lll3 = oull3 = [ )" wdex — [ o o ©3)
This infer by (2.2) that E’ (t) <0, Vt >0 O

Theorem 3.3. Suppose that assumptions (A1) and (Az) hold, (1o, vo) € (Hé)2 and (u,v) is a local
strong solution of the system (1.1), and E (0) < 0.
Furthermore, we assume that max ( [;° g (s)ds, [y h(s)ds) < p/ (p+1) and

2(r+2) > max (m,k). (34)
Then the solution of the system (1.1) exponentially grows.
Proof. We set

H(t)=—E(t (3.5)

By the definition of H (t) and (3.5)
H(t)=—E(t) >0 (3.6)

By using (3.1) and (3.5) we get
H(t)— 2(714_2) /Q [ufi (u,v) +vf (u,0)]dx <O. (3.7)

So that )
0<HO) <H®) < 57 /Q [y (1, 0) +0fs (1,0)] dx. (3.8)

We define a Lyaponov function
€ 2 2 2 2
L)) =H(®)+5 (I3 + ol3 + | Vull3 + 1Vol3), (39)

for € small to be chosen later.
By taking the time derivative of (3.9) and (1.1), we obtain

L' (t) = H'(t) —|—£/ utudx—i—s/ vtvdx—i—s/ VutVudx—i—s/ Vo Vodx
0 0 0 0
t
>H'(t)—¢ <||Vu]|§ + ||Vv||§> —|—€/Q/ g (t—3s)Vu (t) Vu (s) dsdx
0
t
+8/ / h(t—s) Vo (t) Vv(s)dsdx—e/ ]u\mfzutudx—s/ 0|2 vpvdx
aJo 0 0
—l—s/Q [uf1 (u,v) +vfa(u,v)]dx. (3.10)
Consequently, by (3.6) inequality (3.10) can be rewritten as
L' (6) = e (IVull3+ [V0l3) + [ u" 2 ubdx + [ Jol 2 ofax
—e/ ]u\m72utudx—s/ \v]kfzvtvdx%—s/ [ufi (u,0) +vfr (u,v)] dx
0 0 0

+8/Q/Otg(t—s)Vu(t)Vu(s)dsdx+s/Q/Oth(t—s)Vv(t)Vv(s)dsdx.
(3.11)
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Therefore, combining with

/Q/Otg(t—s)Vu(t)Vu(s)dsdx:/t (s)ds ||u ()2

+/ (t—s) /Vu (s) — Vu (t))dxds.
(3.12)

The Cauchy-Schwartz and Young’s inequalities allow us to estimate the last term in the right
side of (3.12) as follows

/Otg(t—s)/QVu(t)[Vu(s)—Vu()]dxds< (g0 Vi) + ;(/Otg(s)ds> IVul2. (3.13)

Similarly

/Q/O h(t—s)Vv(t)Vv(s)dsdx:/ I (s) ds |[o ()2

+/ (t—>s) /VU — Vo (t))dxds,
(3.14)

and
/Oth(t—s)/QVv(t) (Vo (s) — Vo ()] duds < = (hon) ;(/Oth(s)ck;) IVol?. (3.15)

Inserting (3.12) and (3.14) into (3.11), using (3.13) and (3.15), lead to

1/t 1/t
/ > 7/ . 2 7/ -
v ze(; [s@ds=1) [Vulde (5 [ ds-1) |70l
+ 5/ lu" % udx + s/ 0|2 v2dx
0 0
1 1
—5/0 [ufi (u,0) +vfa (u,0)]dx — Ee(go Vu) — Es(h o Vo)
— 8/ |u|™ 2 wpudx — s/ 0|2 vpvdx. (3.16)
Q Q
To estimate the two last terms in the right hand-side of (3.16), by using the following Young

inequality
XY <6X2+671Y2%, X, Y>0, 6> 0.

We have

m

/ |u|™ 2 wpudx < 5/ u|™ 2 u2dx + 6 |[u)| ™ (3.17)
o) o)

Similarly
/ 02 vjudx < a‘/ o< 02dx + 571 o)t (3.18)
Q Q
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Inserting the last two estimates into (3.16), we obtain
/ 1t 2 1t 2
Uze(; [ g@)ds—1)[Vulb+e (5 [ h(s)ds—1) Vol
0 0
+(1—e§)/ \u]mfzufdij(l—scS)/ 0|2 v2dx
) )
ol e~ ol e [ ufy (10) + ofs (w,0)] dx
- %s (goVu) — %e (hoVnw). (3.19)
By using (3.1), we get
/ 1t 2 1t 2
V() ze(y [ g ds—1) |IVulh+e (5 [ nis)ds—1) Vol
2 Jo 2 Jo
e u" — s y|vuﬁ+(1—e(s)/ |u|m—2u$dx+(1—sa)/ o2 o2dx
) )
2 1 t
+[2£(r+2)H(t)—|— e )<1—/Og(s)ds> Va2

2(r2+1) <1_/Oth(s)ds> Vol (3.20)
+2(72+1) (govu)+2(’2+1) (howﬁ ~ 2 (g0 Vu) = (o Vo).

So that
L' (t) > (1—55)/ \u|m—2u$dx+(1—ea)/ 02 o2dx
O O

2 2 1
— et el -0 ol e (202 - 2) (g0 v

r+2

>(h Vo) +2(r+2)H(t)

(™
ve (202 -z 2052 ["g(o)as) |vulB
€ (

2 ”2 _22”2)/ h(s)ds> Vo2, (3.21)
0

By (3.4), the embedding L™ (Q) — L>*+2) (Q), L¥ (Q) — L2+?) (), and using the algebraic
inequality

1
z”§(2+1)§<1+a>(z+a),Vz>0,0<V§1,a20, (3.22)

we have

lully < ellullgira < e (lula

<e (1t g ) (0303
< (lull3y 3+ H )

By the Lemma 1 and (3.7), we obtain

lullm < cz/Q [ufi (u,v) +vfr (u,0)]dx, (3.23)
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Similarly
o]k < 03/0 (11 (1,0) + 0fs (1, 0)] dx. (3.24)
Therefore, by (3.23) and (3.24), the inequality (3.21) becomes
L'(f) > (1—ed) /Q )" 2 u2dx + (1 — ed) /Q o2 v2dx
+2¢ (r+2) H (t) +ear (|| Vull3 + | Vol3) (3.25)
+eay [(go Vu) 4 (ho Vo)] —ecyd ! /Q [ufy (u,0) +vfa(u,0)]dx,

where

ﬂlZmin<2(r+2)_2+l_2(r+2)/()+Oog(s)d5,2(r+2)_2+1_2(r+2)/()+°oh(s)ds>,

2 2 2 2

2 2 1
ap = (r + )—fandC4:c2—|—C3.

2 2
Taking
0 < a3z < min (dl,ﬂlz),
and
2H (1) = — (||Vull; + | Voll3) = [(g 0 Vu) + (ho Vo)
+ 2(7'2_|_2) /Q [Mfl (H, v) + vfz <1/l, U)] dx.
We get

L' (t) > (1 —ed) (/Q |2 ufdx%—/ﬂ o2 vfdx) +e(2(r+2)—2a3)H(t)
e —a3) (Va2 + | VoI2) +¢ (a2 — as) [(g.0 Va) + (ho Vo))

2a _
+e (Z(VjZ) — 40 1) /Q [ufi (u,0) +vfr (u,0)]dx (3.26)

+e (ma IVl + Vol + (g0 V) + (ko Vo) = 52 | fuf (0,0) + o (0, 0)] dx ).

At this point, and for large value of § and ¢ small enough such that

2a3 -1
2(r+2) cgd - >0and1—¢d > 0.
Noting that
2(r+2)—2a3 > 0.
Then
L (8) > My (IVul2+ | Vol3 + (g0 Vu) + (o Vo) + H (1)) (327)

On the other hand, we have

_ € 2 € 2 € 2 2
L(t)—H(t)+2/Qu dx+2/ﬂv dx+ = (I1Vul3+1Vol3)
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By Poincaré’s inequality, we obtain

2 2 < 2 2
/Qu dx+/Qv dx < cs (|| Vul2+ Vo),
so that

L(t) < Ma (H (£) + | Vull3 + | Vo 3)

< My (H () + | Vul3 + || Vo]3 + (g0 Var) + (ho Vo)) (3.28)
Then by (3.27) and (3.28), we get
L'(t) 2 EL(#), (3.29)
and . .
L(0) = H (0) + 5 (Iluol3+ llool + & [Vl + [ Vol2) > o
Finally, a simple integration of (3.29) gives the desired result. |
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