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1 Introduction

In recent years, the extensive study of fractional differential equations owes to widespread
applications of the subject in engineering and technical sciences. Crucial phenomena in eco-
nomics, physics, chemical technology, biology, control theory, signal and image processing,
electromagnetics, acoustics, viscoelasticity, and material science are well described by differ-
ential equations of fractional order. In contrast to classical differential and integral operators,
fractional-order operators are nonlocal and account for the memory and hereditary proper-
ties of many phenomena and processes in nature. Much of the literature on fractional-order
boundary problems involves classical Riemann-Liouville or Hadamard type integral bound-
ary conditions. Besides the conditions mentioned above, there are other types of integral
boundary conditions which contain Erdélyi-Kober and Katugampola fractional integral op-
erators (introduced by Arthur Erdélyi and Hermann Kober [16] in 1940 and U.N. Katugam-
pola [21] in 2011). Such operators play an important role in solving single, dual, and triple
integral equations possessing special functions of mathematical physics in their kernels. For
details and applications of the Erdélyi-Kober and Katugampola fractional integrals, for in-
stance, see [3,4,24]. The main reason for the success of fractional calculus can be shown by the
accuracy of new fractional-order models than integer-order ones. One of the most important
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fractional derivatives (and integrals) properties is the nonlocal property. Most fractional oper-
ators consider the entire history of the being considered process, thus being able to model the
nonlocal and distributed effects often encountered in natural and technical phenomena. For
recent developments and various applications of different fractional operators in the fractional
modeling, we refer to [1, 6, 7, 9–12, 14, 15, 25, 26, 30, 32] and the references therein.

In [4] authors gave sufficient criteria for the existence of solutions for the following Caputo
fractional differential equation:

Dqx(τ) = F(τ, x(τ)), τ ∈ (0, T),

subject to nonlocal generalized Riemann-Liouville (Katugampola) fractional integral bound-
ary conditions of the form

x(0) = γ
ρ1−α

Γ(α)

∫ ξ

0

sρ−1x(s)
(ξρ − sρ)1−α

ds := γ ρIαx(ξ),

x(T) = δ
ρ1−β

Γ(β)

∫ ε

0

sρ−1x(s)
(ερ − sρ)1−α

ds := δ ρIβx(ε), 0 < ξ, ε < T,

where Dq denotes the Caputo fractional derivative of order q, ρIz, z ∈ {α, β}, is the generalized
Riemann-Liouville fractional integral of order z > 0, ρ > 0, ξ and ε are arbitrary real constants,
with ξ, ε ∈ (0, T), γ, δ ∈ R and F : [0, T]×R→ R is a continuous function.

In [33] authors established the existence of solutions for the following nonlinear Riemann-
Liouville fractional differential equation subject to nonlocal Erdelyi-Kober fractional integral
conditions:

Dqx(τ) = F(τ, x(τ)), τ ∈ (0, T),

x(0) = 0, αx(T) =
m

∑
i=1

βiI
γi ,δi
ηi x(ξi),

where 1 < q ≤ 2, Dq is the standard Riemann-Liouville fractional derivative of order q, I
γi ,δi
ηi

is the Erdelyi-Kober fractional integral of order δi > 0 with ηi > 0 and γi ∈ R, i = 1, 2, ..., m,
F : [0, T]×R→ R is a continuous function and α, βi ∈ R, ξi ∈ (0, T), i = 1, 2, ..., m, are given
constants.

In [3], authors studied a new class of boundary value problems of Caputo fractional dif-
ferential equations:

cDqx(τ) = F(τ, x(τ)), τ ∈ [0, T],

supplemented with Riemann-Liouville and Erdelyi-Kober fractional integral boundary condi-
tions at the left and right end points of the interval [0, T] respectively, that is,

x(0) = α
1

Γ(p)

∫ ζ

0
(ζ − s)p−1ds := αIpx(ζ),

x(T) = β
ηξ−η(δ+γ)

Γ(δ)

∫ ξ

0

sηγ+η−1x(s)
(ξη − sη)1−δ

ds := βI
γ,δ
η x(ξ), 0 < ξ, ζ < T,

where cDq is the Caputo fractional derivative of order 1 < q ≤ 2, F : [0, T] ×R → R is a
continuous function, Ip denotes Riemann-Liouville fractional integral of order p > 0, and I

γ,δ
η

denotes Erdélyi-Kober fractional integral of order δ > 0, η > 0, γ ∈ R.
In [13] authors gave the sufficient conditions of existence solutions of nonlocal boundary

conditions for the following nonlinear fractional differential equation of order α ∈]2, 3]:

cDqx(τ) = F(τ, x(τ)), τ ∈ [0, T],
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subject to nonlocal Erdélyi-Kober fractional integral boundary conditions of the form:

x(T) =
m

∑
i=1

ai J
γi ,δi
ηi x(βi), 0 < βi < T,

x′(T) =
m

∑
i=1

bi J
γi ,δi
ηi x′(σi), 0 < σi < T,

x′′(T) =
m

∑
i=1

di J
γi ,δi
ηi x′′(ε i), 0 < ε i < T,

(1.1)

where Dα is the Caputo fractional derivative of order 2 < α ≤ 3 and I
γi ,δi
ηi denotes Erdélyi-

Kober fractional integral of order δi > 0, ηi > 0, γi ∈ R, F : [0, T]×R → R is a continuous
function.

Motivated by the studies above, in this paper, we concentrate on the following boundary
value problem of nonlinear Hilfer fractional differential equation

D
α,β
0+ x(τ) = F(τ, x(τ)), for a.e. τ ∈ J := [0, T], (1.2)

with the mixed fractional integral boundary conditions:

I1−γx(T) = λ1
ρ1−q

Γ(q)

∫ ε

0

sρ−1x(s)
(ερ − sρ)1−q ds := λ1

ρIqx(ε),

I2−γx′(T) = λ2
ηξ−η(δ+γ1)

Γ(δ)

∫ ξ

0

sηγ1+η−2x(s)
(ξη − sη)2−δ

ds := λ2I
γ1,δ
η x′(ξ), 0 < ξ, ε < T,

(1.3)

where D
α,β
0+ is the Hilfer fractional derivative such that 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β− αβ,

ρIq is the Katugampola integral of q > 0 and I
γ,δ
η denote Erdélyi-Kober fractional integral of

order δ > 0, η > 0, γ1 ∈ R, and let E be a reflexive Banach space with norm ‖.‖, F : J×E→ E

is a continuous function, λi, i = 1, 2 are real constants.
The rest of the paper is organized as follows. In Section 2, we recall some basic concepts

of fractional calculus and introduce the integral operator associated with the given problem.
In Section 3, existence results, which rely on Mönchs fixed point theorem and its related
Kuratowski measure of noncompactness, are presented. Finally, in Section 4, we provide two
examples to show the applicability of our main results.

2 Preliminaries and lemmas

In what follows, we introduce definitions, notations, and preliminary facts used in the sequel.
For more details, we refer to [5, 17, 22, 27, 31].
Let E, be a Banach space. Denote by C(J, E) the Banach space of continuous functions v :
J→ E, with the usual supremum norm

‖v‖∞ = sup
{
‖v(τ)‖, τ ∈ J

}
.

Let L1(J, E) be the Banach space of measurable functions v : J → E which are Bochner
integrable, equipped with the norm

‖v‖L1 =
∫

J
‖v(τ)‖dt.

AC1(J, E) denotes the space of functions v : J → E, whose first derivative is absolutely
continuous.
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Definition 2.1. Let J = [0, T] be a finite interval and 0 ≤ γ < 1, we introduce the weighted
space C1−γ(J, E) of continuous functions v on (0, T]

C1−γ(J, E) =
{

v : (0, T]→ E : (τ − a)1−γv(τ) ∈ C(J, E)
}

.

In the space C1−γ(J, E), we define the norm

‖v‖C1−γ
= ‖(τ − a)1−γv(τ)‖C.

Definition 2.2. Let 0 < α < 1, 0 ≤ β ≤ 1, the weighted space C
α,β
1−γ(J, E) is defined by

C
α,β
1−γ(J, E) =

{
v : (0, T]→ R : D

α,β
0+ v ∈ C1−γ(J, E)

}
, γ = α + β− αβ,

and
C1

1−γ(J, E) =
{

v : (0, T]→ R : v′ ∈ C1−γ(J, E)
}

, γ = α + β− αβ,

with the norm
‖v‖C1

1−γ
= ‖v‖C + ‖v′‖C1−γ

. (2.1)

Moreover, C1−γ(J, E) is complete metric space of all continuous functions mapping J into
E with the metric d defined by

d(v1, v2) =
∥∥∥v1 −v2

∥∥∥
C1−γ(J,E)

:= max
τ∈J

∣∣∣(τ − a)1−γ
[
v1(τ)−v2(τ)

]∣∣∣.
Now, we give some results and properties of fractional calculus.

Definition 2.3. ( [22]) The Riemann-Liouville fractional integral of order α ∈ R+ of a contin-
uous function v : (0, ∞)→ R is defined by

Iα
0+v(τ) =

1
Γ(α)

∫ τ

0
(τ − s)α−1v(s)ds, τ > 0, (2.2)

provided the right-hand side is point-wise defined on (0, ∞), where Γ(α) is the Euler’s Gamma
function.

Definition 2.4. ( [22]) The Riemann-Liouville fractional derivative of order α ∈ R+ of a con-
tinuous function v : (0, ∞)→ R is defined by

Dα
0+v(τ) =

1
Γ(n− α)

dn

dtn

∫ τ

0
(τ − s)n−α−1v(s)ds, n− 1 < α < n, (2.3)

where n = [α] + 1, and [α] means the integral part of α, provided the right hand side is
point-wise defined on (0, ∞).

Definition 2.5. ( [22]) The Caputo derivative of order α for a function v : [0, ∞) → R can be
written as

CDαv(τ) = Dα
0+

(
v(τ)−

n−1

∑
k=0

τk

k!
v(k)(0)

)
, τ > 0, n− 1 < α < n. (2.4)
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Remark 2.6. If v(τ) ∈ Cn[0, ∞), then

CDαv(τ) =
1

Γ(n− α)

∫ τ

0
(τ − s)n−α−1v(n)(s)ds

= In−pv(n)(τ), τ > 0, n− 1 < α < n.
(2.5)

Definition 2.7. ( [21]) Katugampola integral of order q > 0 and ρ > 0, of a function v(τ), for
all 0 < τ < ∞, is defined as

ρIqv(τ) =
ρ1−q

Γ(q)

∫ τ

0

sρ−1v(s)
(τρ − sρ)1−q ds, (2.6)

provided the right-hand side is point-wise defined on (0, ∞).

Remark 2.8. ( [21]) The above definition corresponds to the one for Riemann-Liouville frac-
tional integral of order q > 0 when ρ = 1, while the famous Hadamard fractional integral
follows for ρ→ 0, that is,

ρ

lim
ρ→0

Iqv(τ) =
1

Γ(q)

∫ τ

0

(
log

τ

s

)q−1 v(s)
s

ds. (2.7)

Lemma 2.9. ( [4]) Let ρ, q > 0 and p > 0 be the given constants. Then the following formula holds:

ρIqτp =
Γ( p+ρ

ρ )

Γ( p+ρq+ρ
ρ )

τp+ρq

ρq . (2.8)

Definition 2.10. ( [16]) The Erdélyi-Kober fractional integral of order δ > 0 with η > 0 and
γ ∈ R of a continuous function v : (0, ∞)→ R is defined by

I
γ,δ
η v(τ) =

ητ−η(δ+γ)

Γ(δ)

∫ τ

0

sηγ+η−1v(s)
(τη − sη)1−δ

ds, (2.9)

provided the right side is point-wise defined on R+.

Remark 2.11. For η = 1 the above operator is reduced to the Kober operator

I
γ,δ
1 v(τ) =

τ−(δ+γ)

Γ(δ)

∫ τ

0

sγv(s)
(τ − s)1−δ

ds, γ, δ > 0, (2.10)

that was introduced for the first time by Kober in [23]. For γ = 0, the Kober operator is
reduced to the Riemann-Liouville fractional integral with a power weight:

I
0,δ
1 v(τ) =

τ−δ

Γ(δ)

∫ τ

0

v(s)
(τ − s)1−δ

ds, δ > 0. (2.11)

Lemma 2.12. Let δ, η > 0 and γ, q ∈ R. Then we have

I
γ,δ
η τq =

τqΓ(γ + (q/η) + 1)
Γ(γ + (q/η) + δ + 1)

. (2.12)

In [17], R. Hilfer studied applications of a generalized fractional operator having the
Riemann-Liouville and Caputo derivatives as specific cases (see also [18–20]).
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Definition 2.13. ( [17]) The Hilfer fractional derivative D
α,β
0+ of order α (n− 1 < α < n) and

type β (0 ≤ β ≤ 1) is defined by

D
α,β
0+ = I

β(n−α)
0+ DnI

(1−β)(n−α)
0+ v(τ), (2.13)

where Iα
0+ and Dα

0+ are Riemann-Liouville fractional integral and derivative defined by (2.2)
and (2.3), respectively.

Remark 2.14. ( [17]) Hilfer fractional derivative interpolates between the Riemann-Liouville
((2.3), if β = 0) and Caputo ((2.4), if β = 1) fractional derivatives since

D
α,0
0+ =R−L Dα

0+ and Dα,1 =C Dα
0+ .

Lemma 2.15. ( [17]) Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β− αβ, and v ∈ L1(J, E).
The operator D

α,β
0+ can be written as

D
α,β
0+ v(τ) =

(
I

β(1−α)
0+

d
dt I

(1−γ)
0+ v

)
(τ) = I

β(1−α)
0+ Dγv(τ), for a.e. τ ∈ J.

Moreover, the parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ < β, 1− γ < 1− β(1− α).

Lemma 2.16. ( [17]) Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β − αβ, If D
β(1−α)
0+ v exists and in

L1(J, E), then

D
α,β
0+ Iα

0+v(τ) = I
β(1−α)
0+ D

β(1−α)
0+ v(τ), for a.e. τ ∈ J.

Furthermore, if v ∈ C1−γ(J, E) and I
1−β(1−α)
0+ v ∈ C1

1−γ(J, E), then

D
α,β
0+ Iα

0+v(τ) = v(τ), for a.e. τ ∈ J.

Lemma 2.17. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β− αβ, and v ∈ L1(J, E). If D
γ
0+v exists and

in L1(J, E), then

Iα
0+D

α,β
0+ v(τ) = I

γ
0+D

γ
0+v(τ) = v(τ)− I

1−γ

0+
v(0+)

Γ(γ) (τ − a)γ−1, for a.e. τ ∈ J.

Lemma 2.18. ( [22]) For τ > a, we have

Iα
0+(τ − a)β−1(τ) =

Γ(β)

Γ(β− α)
(τ − a)β+α−1,

Dα
0+(τ − a)β−1(τ) =

Γ(β)

Γ(β− α)
(τ − a)β−α−1.

(2.14)

Lemma 2.19. Let α > 0, 0 ≤ β ≤ 1, so the homogeneous differential equation with Hilfer fractional
order

D
α,β
0+ h(τ) = 0, (2.15)

has a solution

h(τ) = c0τγ−1 + c1τγ+2β−2 + c2τγ+2(2β)−3 + ... + cnτγ+n(2β)−(n+1).
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Proposition 2.20. for a given set V of functions v : J→ E, let us denote by

V(τ) =
{

v(τ) : v ∈ V
}

, τ ∈ J,

and
V(J) =

{
v(τ) : v ∈ V, τ ∈ J

}
.

Definition 2.21. A map v : J×E→ E is said to be Caratheodory if
(i) τ 7→ v(τ, u) is measurable for each u ∈ E,
(ii) u 7→ v(τ, u) is continuous for almost all τ ∈ J.

For convenience, we recall the definitions of the Kuratowski measure of noncompactness
and summarize the main properties of this measure.

Definition 2.22. ( [5, 8]). Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map µ : ΩE → [0, ∞] defined by

µ(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE.

This measure of noncompactness satisfies some important properties [5, 8]:

(a) µ(B) = 0⇔ B is compact (B is relatively compact),

(b) µ(B) = µ(B),

(c) A ⊂ B⇒ µ(A) ≤ µ(B),

(d) µ(A + B) ≤ µ(A) + µ(B),

(e) µ(cB) = |c|µ(B); c ∈ R,

(f) µ(convB) = µ(B).

Let us now recall Mönch’s fixed point theorem and an important lemma.

Theorem 2.23. ( [2, 31]). Let D be a bounded, closed and convex subset of a Banach space such that
0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = convN(V) or V = N(V) ∪ {0} ⇒ µ(V) = 0, (2.16)

holds for every subset V of D, then N has a fixed point.

Lemma 2.24. ( [31]) Let D be a bounded, closed and convex subset of the Banach space C(J, E), G
a continuous function on J× J and v a function from J×E −→ E which satisfies the Caratheodory
conditions, and suppose there exists p ∈ L1(J, R+) such that, for each τ ∈ J and each bounded set
B ⊂ E, we have

limh→0+ µ(v(Jτ,h × B)) ≤ p(τ)µ(B); here Jτ,h = [τ − h, τ] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J

G(s, τ)v(s, y(s))ds : y ∈ V
})
≤
∫

J
‖G(τ, s)‖p(s)µ(V(s))ds.
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3 Main results

Let us start by defining what we meant by a solution to the problem (1.2)-(1.3).

Definition 3.1. A function x ∈ C1−γ(J, E) is said to be a solution of the problem (1.2)-(1.3) if
x satisfies the equation D

α,β
0+ x(τ) = F(τ, x(τ)) on J, and the conditions (1.3).

Lemma 3.2. For any x ∈ C1−γ(J, R), x is a solution of the linear fractional differential equation

Dα,βx(τ) = y(τ), (3.1)

supplemented with the boundary conditions (1.3) if and only if

x(τ) = Iαy(τ) +
τγ−1

Λ

{
v4(λ

ρ
1IqIαy(ε)− Iα−γ+1y(T)) + v2(λ2I

γ1,δ
η Iα−1y(ξ)− Iα−γ+1y(T))

}
+

τγ+2β−2

Λ

{
v1(λ2I

γ1,δ
η Iα−1y(ξ)− Iα−γ+1y(T))− v3(λ

ρ
1IqIαy(ε)− Iα−γ+1y(T))

}
,

(3.2)

we can write

x(τ) = Iαy(τ) +
τγ−1

Λ

{
λ1(v4 − v3τ2β−1)ρIqIαy(ε) + λ2(v2 + v1τ2β−1)Iγ1,δ

η Iα−1y(ξ)

+ ((v3 − v1)τ
2β−1 − (v4 + v2))I

α−γ+1y(T)
}

,
(3.3)

where

Λ = v1v4 + v2v3 , 0,

v1 = Γ(γ)− λ1
Γ(γ+ρ−1

ρ )εγ+ρq−1

Γ(γ+ρq+ρ−1
ρ )ρq

,

v2 = λ1
Γ(γ+2β+ρ−2

ρ )εγ+2β+ρq−2

Γ(γ+2β+ρq+ρ−2
ρ )ρq

− Γ(γ + 2β− 1)T2β−1

Γ(2β)
,

v3 = Γ(γ)− λ2(γ− 1)
Γ(γ1 +

γ−2
η + 1)ξγ−2

Γ(γ1 +
γ−2

η + δ + 1)
,

v4 =
Γ(γ + 2β− 1)

Γ(2β)
T2β−1 − λ2(γ + 2β− 2)

Γ(γ1 +
γ+2β−3

η + 1)ξγ+2β−3

Γ(γ1 +
γ+2β−3

η + δ + 1)
.

(3.4)

Proof. It is well known that the general solution of the fractional differential equation (3.1) can
be written as

x(τ) = Iαy(τ) + c1τγ−1 + c2τγ+2β−2, (3.5)

where c1, c2 ∈ R are arbitrary constants. Using the boundary conditions (1.3) in (3.5) together
with Lemma 2.9, Lemma 2.12 and Lemma 2.18 we obtain a system of equations in c1 and c2

given by

v1c1 − v2c2 = λ
ρ
1IqIαy(ε)− Iα−γ+1y(T),

v3c1 + v4c2 = λ2I
γ1,δ
η Iα−1y(ξ)− Iα−γ+1y(T).

(3.6)
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Solving the system (3.6), we get

c1 =
1
Λ

{
v4(λ

ρ
1IqIαy(ε)− Iα−γ+1y(T)) + v2(λ2I

γ1,δ
η Iα−1y(ξ)− Iα−γ+1y(T))

}
,

c2 =
1
Λ

{
v1(λ2I

γ1,δ
η Iα−1y(ξ)− Iα−γ+1y(T))− v3(λ

ρ
1IqIαy(ε)− Iα−γ+1y(T))

}
,

where v1, v2, v3, and v4 are given by (3.4). Substituting the values of c0, c1 in (3.5), we obtain
(3.2). Conversely, it can easily be shown by direct computation that the integral solution (3.2)
satisfies the equation (3.1) and boundary conditions (1.3). This completes the proof. �

In order to present and prove our main results, we consider the following hypotheses:
(H1) F : J×E→ E satisfies the Caratheodory conditions.
(H2) There exists p ∈ L1(J, R+), such that,

‖F(τ, x)‖ ≤ p(τ)‖x‖, for τ ∈ J and each x ∈ E.

(H3) For each τ ∈ J and each bounded set B ⊂ E, we have

limh→0+ µ(F(Jτ,h × B)) ≤ τ1−γ p(τ)µ(B); here Jτ,h = [τ − h, τ] ∩ J.

Now, we shall prove the following theorem concerning the existence of solutions of (1.2)-(1.3).
Let

p∗ = sup
τ∈J

p(τ).

Theorem 3.3. Assume that the hypotheses (H1)-(H3) hold. If

p∗M < 1, (3.7)

then the problem (1.2)-(1.3) has at least one solution defined on J .

In the sequel, we use the following expressions:

IαF(s, x(s))(τ) =
1

Γ(α)

∫ τ

0
(τ − s)α−1F(s, x(s))ds, τ ∈ (0, T),

ρIqIαF(s, x(s))(ε) =
ρ1−q

Γ(α)Γ(q)

∫ ε

0

∫ r

0

rρ−1(r− s)α−1

(ερ − rρ)1−q F(s, x(s))dsdr, ε ∈ (0, T),

I
γ1,δ
η Iα−1F(s, x(s))(ξ) =

ητ−η(δ+γ1)

Γ(α− 1)Γ(δ)

∫ ξ

0

∫ r

0

sηγ1+η−1(r− s)α−2

(ξη − rη)1−δ
F(s, x(s))dsdr, ξ ∈ (0, T).

For convenience, we set a constant

M :=
Tα−γ+1

Γ(α + 1)
+

1
|Λ|

{(
|λ1|(|v4|+ |v3|T2β−1)

Γ(α + 1)

)(Γ( α+ρ
ρ )εα+ρq

Γ( α+ρq+ρ
ρ ρq

)
+

(
|λ2|(|v2|+ |v1|T2β−1)

Γ(α)

)

×
(

Γ(γ1 +
α−1

η + 1)ξα−1

Γ(γ1 +
α−1

η + δ + 1)

)
+ ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))

(
Tα−γ+1

Γ(α− γ + 2)

)}
.

Proof. Transform the problem (1.2)-(1.3) into a fixed point problem. Consider the operator
Q : C1−γ(J, E)→ C1−γ(J, E) defined by

Qx(τ) = Iαy(τ) +
τγ−1

Λ

{
λ1(v4 − v3τ2β−1)ρIqIαy(ε) + λ2(v2 + v1τ2β−1)Iγ1,δ

η Iα−1y(ξ)

+ ((v3 − v1)τ
2β−1 − (v4 + v2))I

α−γ+1y(T)
}

.
(3.8)
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Clearly, the fixed points of the operator Q are solutions of the problem (1.2)-(1.3).

D =
{

x ∈ C1−γ(J, E) : ‖x‖ ≤ R
}

,

where R satisfies inequality (3.7).
Notice that the subset D is closed, convex, and equicontinuous. We shall show that the oper-
ator Q satisfies all the assumptions of Mönch’s fixed point theorem.
The proof will be given in three steps.

Step 1: Q is continuous:

Let xn be a sequence such that xn → x in C1−γ(J, E).
Then, for each τ ∈ J ,

‖τ1−γ((Qxn)(τ)− (Qx)(τ))‖
≤ τ1−γIα‖F(s, xn(s))−F(s, x(s))‖(τ)

+
1
Λ

{
|λ1|(|v4|+ |v3|τ2β−1)ρIqIα‖F(s, xn(s))−F(s, x(s))‖(ε)

+ |λ2|(|v2|+ |v1|τ2β−1)Iγ1,δ
η Iα−1‖F(s, xn(s))−F(s, x(s))‖(ξ)

+ ((|v3|+ |v1|)τ2β−1 + (|v4|+ |v2|))Iα−γ+1‖F(s, xn(s))−F(s, x(s))‖(T)
}

≤
{

T1−γIα(1)(T) +
1
Λ

{
|λ1|(|v4|+ |v3|T2β−1)T2β−1)ρIqIα(1)(ε)

+ |λ2|(|v2|+ |v1|T2β−1)Iγ1,δ
η Iα−1(1)(ξ) + ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))

Iα−γ+1(1)(T)
}}
‖F(s, xn(s))−F(s, x(s))‖.

Since F is of Caratheodory type, then by the Lebesgue dominated convergence theorem
we have

‖Q(xn)−Q(x)‖∞ → 0 as n→ ∞.

Step 2: Q maps D into itself :

Take x ∈ D, by (H2), we have, for each τ ∈ J and assume that Qx(τ) , 0.
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‖τ1−γ(Qx)(τ)‖

≤τ1−γIα‖F(s, x(s))‖(τ) + 1
Λ

{
|λ1|(|v4|+ |v3|τ2β−1)ρIqIα‖F(s, x(s))‖(ε)

+ |λ2|(|v2|+ |v1|τ2β−1)Iγ1,δ
η Iα−1‖F(s, x(s))‖(ξ)

+((|v3|+ |v1|)τ2β−1 + (|v4|+ |v2|))Iα−γ+1‖F(s, x(s))‖(T)
}

≤τ1−γIα‖x‖p(s)(τ) +
1
Λ

{
|λ1|(|v4|+ |v3|T2β−1)ρIqIα‖x‖p(s)(ε) + |λ2|(|v2|+ |v1|T2β−1)

×I
γ1,δ
η Iα−1‖x‖p(s)(ξ) + ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))Iα−γ+1‖x‖p(s)(T)

}
≤p∗R

[
T1−γIα(1)(τ) +

1
Λ

{
|λ1|(|v4|+ |v3|T2β−1)ρIqIα(1)(ε)

+|λ2|(|v2|+ |v1|T2β−1)Iγ1,δ
η Iα−1(1)(ξ) + ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))Iα−γ+1(1)(T)

}]
≤p∗R

[
Tα−γ+1

Γ(α + 1)
+

1
|Λ|

{(
|λ1|(|v4|+ |v3|T2β−1)

Γ(α + 1)

)(Γ( α+ρ
ρ )εα+ρq

Γ( α+ρq+ρ
ρ ρq

)

+

(
|λ2|(|v2|+ |v1|T2β−1)

Γ(α)

)
×
(

Γ(γ1 +
α−1

η + 1)ξα−1

Γ(γ1 +
α−1

η + δ + 1)

)

+((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))
(

Tα−γ+1

Γ(α− γ + 2)

)}]
:=p∗RM

≤R.

Next, we show that Q(D) is equicontinuous :
By Step 2, it is obvious that Q(D) ⊂ C1−γ(J, E) is bounded. For the equicontinuity of
Q(D), let τ1, τ2 ∈ J , τ1 < τ2 and x ∈ D, so τ

1−γ
2 Qx(τ2)− τ

1−γ
1 Qx(τ1) , 0. Hence,

‖τ1−γ
2 Qx(τ2)− τ

1−γ
1 Qx(τ1)‖ ≤ Iα

∣∣∣τ1−γ
2 F(s, x(s))(τ2)− τ

1−γ
1 F(s, x(s))(τ1)

∣∣∣
≤ 1

Γ(α)

∫ τ1

1

[
(τ2 − s)α−1 − (τ1 − s)α−1

]
‖F(s, x(s))‖ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1‖F(s, x(s))‖ds

≤ 1
Γ(α)

∫ τ1

1

[
(τ2 − s)α−1 − (τ1 − s)α−1

]
‖x‖p(s)ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1‖x‖p(s)ds

≤ p∗R

{
(τα−γ+1

2 − τ
α−γ+1
1 )

Γ(α + 1)

}
.

As τ1 → τ2, the right hand side of the above inequality tends to zero.
Hence Q(D) ⊂ D.

Step 3: The implication (2.16) holds.
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Now let V be a bounded and equicontinuous subset of D. Hence τ 7→ v(τ) = µ(V(τ))

is continuous on J such that V ⊂ conv(0∪Q(V)). Clearly, V(τ) ⊂ conv({0} ∪Q(V)) for
al τ ∈ J . Hence QV(τ) ⊂ QD(τ), τ ∈ J is bounded in E . By assumption (H3), and the
properties of measure µ , we have, for each τ ∈ J,

τ1−γv(τ) ≤ µ(τ1−γQ(V)(τ) ∪ {0})) ≤ µ(τ1−γ(QV)(τ))

≤µ

{
τ1−γIαF(s, V(s))(τ) +

1
|Λ|

{
|λ1|(|v4|+ |v3|τ2β−1)ρIqIαF(s, V(s))(ε)

+ λ2(v2 + v1τ2β−1)Iγ1,δ
η Iα−1F(s, V(s))(ξ) + ((v3 − v1)τ

2β−1 − (v4 + v2))I
α−γ+1F(s, V(s))(T)

}}
≤τ1−γIαµ(F(s, V(s)))(τ) +

1
|Λ|

{
|λ1|(|v4|+ |v3|τ2β−1)ρ IqIαµ(F(s, V(s)))(ε) + |λ2|(|v2|+ |v1|τ2β−1)

× I
γ1,δ
η Iα−1µ(F(s, V(s)))(ξ) + ((|v3|+ |v1|)τ2β−1 + (|v4|+ |v2|))Iα−γ+1µ(F(s, V(s)))(T)

}
≤T1−γIα p(s)v(s)(τ) +

1
|Λ|

{
|λ1|(|v4|+ |v3|T2β−1)ρ IqIα p(s)v(s)(ε) + |λ2|(|v2|+ |v1|T2β−1)

× I
γ1,δ
η Iα−1 p(s)v(s)(ξ) + ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))Iα−γ+1 p(s)v(s)(T)

}
≤p∗‖v‖

[
T1−γIα(1)(τ) +

1
|Λ|

{
|λ1|(|v4|+ |v3|T2β−1)ρIqIα(1)(ε)

+ |λ2|(|v2|+ |v1|T2β−1)Iγ1,δ
η Iα−1(1)(ξ) + ((|v3|+ |v1|)T2β−1 + (|v4|+ |v2|))Iα−γ+1(1)(T)

}]
≤p∗‖v‖M.

This means that
‖v‖(1− p∗M) ≤ 0.

By (3.7) it follows that ‖v‖ = 0, that is v(τ) = 0 for each τ ∈ J , and then V(τ) is
relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact
in D. Applying now Theorem 2.23, we conclude that Q has a fixed point which is a
solution of the problem (1.2)-(1.3).

�

4 Examples

In this section, we present an example to illustrate our results.
Let E = l1 = {x = (x1, x2, ..., xn, ...) : ∑∞

n=1 |xn| < ∞} with the norm

‖x‖E =
∞

∑
n=1
|xn|.

Example 4.1. Consider the following nonlinear Hilfer fractional differential equation with a
mixed of fractional integral conditions

D
1/2,1/2
0+ x(τ) = (sin τ+1)e−τ

24

(
x2(τ)

1+|x(τ)|

)
, τ ∈ J = [0, π],

I1/4x(π) = 2
3

1/2 I1/3x(π/3), I5/4x′(π) = 4
5 I4/9,2/7

3/8 x′(π/2).

(4.1)
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Here

α = 1/2, β = 1/2, γ = 3/4, λ1 = 2/3,

λ2 = 4/5, q = 1/3, ρ = 1/2, γ1 = 4/9,

δ = 2/7, η = 3/8, ξ = π/2, ε = π/3.

Form the given data, we get

v1 = 1.4622, v2 = 0.2838, v3 = 1.4750,

v4 = 3.1361, Λ = 5.0042, M = 7.3159.

and
F(τ, x) = (((sin τ + 1)e−τ)/24)(x2/(1 + |x|)).

Further,

|F(τ, x)| ≤ 1
12
|x|.

With
p∗ =

1
12

.

Hence
p∗M ' 0.6097 < 1.

Therefore, we deduce from the conclusion of Theorem 3.3 that the problem (4.2) has a solution
on [0, π].

Example 4.2. Consider the following nonlinear Hilfer fractional differential equation:
Firstly, we fixed β = 1, on other hand, reduce Problem (4.2) into Caputo fractional differential
equation 

D1/2;1u(t) =
√

3|u| cos2(2πt)
3(27−t) ,

t ∈ J = [0, 1],

I0x(1) = 2
5

1/2 I1/4x(1/3), I1x′(1) = 7
9 I4/9,2/5

3/7 x′(2/3).

(4.2)

Here

v1 = 1.0133, v2 = 0.3005, v3 = 1.0482,

v4 = 2.9344, Λ = 3.1152, M = 6.2147.

Clearly, the function F is continuous. For each u ∈ E and t ∈ [0, 1], we have

|F (t, v)| ≤
√

3
81
|v| .

Hence, the hypothesis (H2) is satisfied with p∗ =
√

3
81 . We shall show that condition (3.7) holds

with J. Indeed,
p∗M ' 0.1335 < 1.

Simple computations show that all conditions of Theorem (3.3) are satisfied. It follows that
the problem (4.2) has at least one weak solution defined on J.
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5 Conclusion

The fractional differential equations have been preferred over integer-order differential equa-
tions for their ability to describe the dynamical behaviors of numerous processes in the scien-
tific and engineering fields. To confirm such a claim, one can observe different investigations
done with the aid of researchers in the literature. In this research article, we investigate
the existence of solutions of a nonlinear fractional differential equation involving the Hilfer
fractional operator with a mixed of fractional integral boundary conditions (Erdélyi-Kober
fractional integral, Katugampola fractional integral). To achieve the goals, we use a method
involving a measure of noncompactness and a fixed point theorem of the Monch type. Though
the technique applied to establish the existence results for the problem at hand is a standard
one, its exposition in the present framework is new. Two examples are presented to guarantee
the viability of our obtained results. Our results are not only new in the given configuration
but also correspond to some new situations associated with the specific values of the param-
eters involved in the given problem. Especially, problem (1.2) is formulated in general form
that combines both fractional Caputo problems and Riemann-Liouville problems, the choices
of β = 1 on the one hand and β = 0 on the other hand, reduce the problem (1.2) into the
Caputo fractional differential equation and Riemann-Liouville fractional differential equation,
respectively.
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