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Abstract. In this paper, we prove existence, uniqueness stability results for a class of
initial value problem for fractional differential equations involving generalized ¢-Hilfer
fractional derivative. The result is based on the Banach contraction mapping principle.
In addition, two examples are given to illustrate our results.
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1 Introduction

The differential and fractional integral calculus, which goes back to 1695, generalizes the con-
cepts of integration and derivation of integer order, see [1-4,8,26] and the references therein
for more details about this field. In these last few decades, the application of fractional dif-
ferential calculus has been made in various fields of research and engineering during the
last decades; including control theory, biochemistry, economics, etc. There are various types
of fractional derivatives, such as Riemann-Liouville fractional derivative, Caputo fractional
derivative, Hadamard fractional derivative, Hilfer fractional derivative, Katugampola frac-
tional derivative, Caputo-Fabrizio fractional derivative, Atangana-Baleanu-Caputo fractional
derivative, ip-fractional derivatives, and many others, see [10,14-17,20,21] and the references
therein. Diaz et al. [6] have presented k-gamma and k-beta functions and demonstrated a num-
ber of their properties. Important properties can be found in the article [11], and very recently
(see [5,12]), many researchers managed to generalize various fractional integrals and deriva-
tives; we refer the readers to [9], where the authors managed to successfully employ these
properties to establish various generalized results. Sousa and Capelas de Oliveira, in [24],
introduce another so-called y-Hilfer fractional derivative with respect to a given function, and
present some important properties concerning this type of fractional operator. They proved
numerous results in [23-25].
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Motivated by the works of the papers mentioned above, in this paper, by using the func-
tions k-gamma, k-beta and k-Mittag-Leffler, we generalize the i-Hilfer fractional derivative
and set some of its properties. Then, we propose a generalized Gronwall inequality, which will
be used in an application. Finally, we consider the initial value problem with k-generalized
y-Hilfer type fractional differential equation :

(1) (1) = f(£x(t)), t€ (a,0], (L.1)
(jakffé)’k;lpx) (a™) = xo, (1.2)

where H fo v, Zlkf_g)’k; ¥ are the k-generalized ip-Hilfer fractional derivative of order ¢ € (0,1)

and type r € [0,1] defined in Section 2, and k-generalized y-fractional integral of order

k(1 — ¢) defined in [13] respectively, where { = 1(r(k —09)+9), 0 <k xR k>0

and f € C([a,b] x R,R). -

The following are the primary novelties of the current paper:

1. Given that the y-Hilfer fractional derivative unifies a larger number of fractional deriva-
tives in a single fractional operator, defining the k-generalized y-Hilfer fractional deriva-
tive allows us to encompass more fractional operators, opening the door to new appli-
cations.

2. The results of this study are partial continuations or generalizations of several results
obtained in [1-3,12,24].

The present paper is organized as follows. In Section 2, some notations are introduced,
and we recall some preliminaries about ip-Hilfer fractional derivative, the functions k-gamma,
k-beta, and k-Mittag-Leffler and some auxiliary results, then we define the k-generalized -
Hilfer type fractional derivative and give some necessary theorems and lemmas. In Section
3, based on the Banach contraction principle a result for the problem (1.1)-(1.2) is presented.
In Section 4, we study the Ulam-Hyers-Rassias (U-H-R) stability for our problem (1.1)-(1.2).
Finally, in the last section, we give two examples to illustrate the applicability of our results.

2 Preliminaries

First, we present the weighted spaces, notations, definitions, and preliminary facts which
are used throughout this paper. Let 0 < a < b < oo, ] = [a,b], ¢ € (0,1), r € [0,1], k > 0 and
&= t(r(k—8)+9). By C(J,R) we denote the Banach space of all continuous functions from
J into R with the norm

[xlleo = sup{|x(£)| - t € T}

AC"(J,R), C"(],R) be the spaces of continuous functions, n-times absolutely continuous and
n-times continuously differentiable functions on ], respectively.
Consider the weighted Banach space

Cop() = {x: (a,b] = Rt = (p(t) = p(a))' “x(t) € C(L,R)},
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with the norm

7

ey, = sup |(9(8) = p(a))' = x(1
and
() = {xec ()2 e Coy(N} e,
Coy (1) = Cap()),

with the norm
n—1

Ixllcz, = ZO 12 oo + [l ey -
=

Consider the space Xf;(a,b), (c € R, 1 < p < o) of those real-valued Lebesgue measurable
functions g on [a, b] for which |/ g]| X <09 where the norm is defined by

lslhg = ([ volsra) g

where ¢ is an increasing and positive function on [g,b] such that ¢’ is continuous on [a, ]
with ¢(0) = 0. In particular, when (x) = x, the space Xﬁ(a, b) coincides with the L,(a,b)
space. Recently, in [6], Diaz and Petruel have defined new functions called k-gamma and
k-beta functions given by

0 k
Iy(a) = / e kdt,a > 0.
0
When k — 1 then I'y(¢) — I'(a), we have also the following useful relations
Ty (a) = ki~IT (%) , Te(a+ k) = alg(a), Te(k) =T(1) = 1.

Furthermore, the k-beta function is defined as follows

1 /1 a_q B_q
Bk(a,ﬁ):E/O 11—k,

o 1, (a8 @) (8)
_Ig(* P _ 2K kP)
Bk(ﬂ(,,g)—kB (k/ k)/ Bk(lxlﬁ) rk(“+‘3) :

The Mittag-Leffler function can also be refined into the k-Mittag-Leffler function defined as
follows ‘
oo xl
i;() Fk(ai + ﬁ)

Now, we give all the definitions to the different fractional operators used throughout this
paper.
Definition 2.1 (k-Generalized ip-fractional Integral [13]). Let ¢ € XZ(a, b) and [a, b] be a finite
or infinite interval on the real axis R = (—o0,0), ¥(t) > 0 be an increasing function on (a, b]

and ¢’ (t) > 0 be continuous on (a,b) and ¢ > 0. The generalized k-fractional integral operator
of a function f (left-sided) of order ¢ is defined by

w1 [ @()g(s)ds
O e |, (w(t) - p(s)' T

Ez’ﬁ(x) = ,,B > 0.

with k > 0.
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Theorem 2.2 ( [18,19]). Let g : [a,b] — R be an integrable function, and take & > 0 and k > 0.
Then %‘Zk;w g exists for all t € [a, b].

8,k

Theorem 2.3 ([18,19]). Let g € Xfl]](u, b) and take © > 0 and k > 0. Then J,"" g € C([a,b],R).

Lemma 2.4 ( [18,19,22]). Let ¢ > 0, r > 0 and k > 0. Then, we have the following semigroup
property given by 19 — 19+ . k 19 .
T, T, 1’
YT () = V) = T T ).

Lemma 2.5 ( [18,19,22]). Let ¢,r > 0 and k > 0. Then, we have

ok 1 Te(r) NS
T WO =9 @) = s (00 — 9(a)

Theorem 2.6 ( [18,19,22]). Let 0 < a < b < 0,8 > 0,0 < ¢ <1,k > 0and x € Cgy(]). If

Z>1—(§,then

(j;:k sz> (a) = lim (j:’:rk wx) (t) = 0.

t—at

We are now able to define the k-generalized y-Hilfer derivative as follows.

Definition 2.7 (k-Generalized y-Hilfer Derivative [18,19,22]). Letn —1 < Z <nwithn €N,
] = [a,b] an interval such that —co < a < b < o0 and g, ¢ € C"([a,b],R) two functions such
that ¢ is increasing and ¢/ (t) # 0, for all t € J. The k-generalized ip-Hilfer fractional derivative
(left-sided) fo ?(-) of a function g of order # and type 0 < r < 1, with k > 0 is defined by

15 kn—19),k; 1 d " — 1) (kn—8)k;
EDs (1) = (Ji o <¢,< >) (G wg)) ()

_ (jaJ(rkn &)klp(sn (k”j(l r) (kn— 19)k41g)) ),

. (1 da\"
Where (5111]_ <ll)/(t')dt‘> .

Lemma 2.8 ( [18,19,22]). Let t > a, ¢ > 0,0 < r < 1,k > 0. Then for 0 < ¢ < 1;¢ =

%(r(k —9) + 0), we have

DI (9(s) = p(a))* ] (1) =0,

Theorem 2.9 ( [18,19,22]). If f € Cg;w[a, bn—1<0<n0<r<1 wheren € Nandk > 0,
then

(2 i) )= 0 ey (o (a2 ).

where

In particular, if n = 1, we have

<‘7a19+kll’ H,Dﬂrlllf) ( ) f( )_ (l/)(t) —lp(ﬂ))éflkya(Jr r)(k=9) kll’f( )




Existence and Ulam stability of k-Generalized y-Hilfer Fractional Problem 5

Lemma 2.10 ( [18,19,22]). Let 9 > 0,0 < r < 1, and x € Cp, (]), where k > 0. Then for t € (a, b],
we have

(FD 25%x) (1) = x(8),

Theorem 2.11 (Banach’s fixed point theorem [7]). Let D be a non-empty closed subset of a Banach
space E, then any contraction mapping N of D into itself has a unique fixed point.

Now, we consider the Ulam stability for problem (1.1)—(1.2) that will be used in Section
4. Letx € Céﬂl)(])’ € >0and v : (a,b] — [0,00) be a continuous function. We consider the
following inequality :

(FDI"x) (1) — £ (L,x(1)| < eolt), t € (a,b]. 2.1)

Definition 2.12. Problem (1.1)—(1.2) is Ulam-Hyers-Rassias (U-H-R) stable with respect to v if
there exists a real number 4y, > 0 such that for each € > 0 and for each solution x € Cé’;tp( J)

of inequality (2.1) there exists a solution y € Cé;zp( J) of (1.1)—(1.2) with

x(t) —y(t)| < eappo(t),  te].

Remark 2.13. A function x € Cé ¢( J) is a solution of inequality (2.1) if and only if there exist
o € Cgy(J) such that

1. |o(t)] <ev(t), t € (a,b],

2. (k ij“’x) (£) = f(t,x(t)) + o(t), t € (a,b)].

We give a generalized Gronwall inequality which will be used in Section 4. We prove this
result by taking into account the properties of the functions k-gamma, k-beta, and k-Mittag-
Leffler.

Lemma 2.14 (The Gronwall inequality [22]). Let x, y be two integrable functions and g continuous,
with domain [a,b] . Let ¥ € C! [a,b] an increasing function such that ' (t) # 0, t € [a,b] and 9 > 0
with k > 0. Assume that

1. x and y are nonnegative,

2. w is nonnegative and nondecreasing.

i
() <y )+ 28 [y ) (e~ pis)
then

0+ [ L OOy () ey — pis) 1y (5) s, .

forallt € [a,b]. And ifyisa nondecreusing function on [a,b]. Then,

x (1) <y (DB (w ()T (8) (9 (1) — p (a))

>
N———
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3 Existence of Solutions

We consider the following fractional differential equation

o,r;
(fpa ﬁx) (t) = w(t), te (a,b], (3.1)
where 0 < ¢ < 1,0 < r < 1, with the condition
<jak+(l—§),k;¢x) (a-l-) = xo, (3.2)
where ¢ = W, xo € R, k > 0, and where w € C(J,R) satisfies the functional
equation:

w(t) = f (£ x(t)).

The following theorem shows that the problem (3.1)-(3.2) has a unique solution.
Theorem 3.1. Ifw(-) € Cé,lp(]), then x satisfies (3.1)-(3.2) if and only if it satisfies

_ w(a))e ,
() = POIO o (5%0) (), 69

Proof. Assume x € Céﬂﬁ(]) satisfies the equations (3.1) and (3.2), and applying the fractional

integral operator jﬂk; l/’() on both sides of the fractional equation (3.1), so
9k; d,r; 0k;
(T 0D ) (1) = (757) (1),

and using Theorem 2.9 and equation (3.2), we get

x(t) = WP g0 ) 1 (78500 (1

T (kG)
_ w(a))E .
= Ok (9 0

Let us now prove that if x satisfies equation (3.3), then it satisfies equations (3.1) and (3.2).
Applying the fractional derivative operator ! fo ?(-) on both sides of the fractional equation
(3.3), then we get

(lljpgi;djx) (t) _ ]I:I,D}:i;lll ((lﬁ(t) - l[](g))gfl x0> . <I€1D;9;:;¢g7’1ﬁk;¢w> (t)

T (k)
Using the Lemma 2.8 and Lemma 2.10, we obtain equation (3.1). Now we apply the operator
‘sz+(l—§),k;¢(.) on equation (3.3), to have

(T92) (0 = £y Tt () — p@)F =+ (T T ) (o),

Now, using Lemma 2.4 and 2.5, we get

(9%2) (0 = £ g Tt 0 — @)t + (78T ) )

= xo+ <\75{k£17§)+ﬂ’k;¢w) (t).

Using Theorem 2.6 with t — a, we obtain equation (3.2). This complete the proof. m|
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As a consequence of Theorem 3.1, we have the following result:

k—
Lemma 3.2. Let(f:wwhereo<l9<1,0§r§1andk>0,letf:]><IR><]R—>]R

be a continuous function such that f(-,x(-)) € Cp,(J), for any x,y € Cgyy(]). If x € C},(]), then
x satisfies the problem (1.1) — (1.2) if and only if x is the fixed point of the operator T : Cgy(]) —
Ce.p(]) defined by

O = ) —El’(ﬂ))g_lx 1 Ly (s)g(s)ds
(Tx) (t) = T (kE) 0+ KT (0) /a () 1/’(5))1_%, (3.4)

where ¢ is a function satisfying the functional equation
(t) = f(t x(t)).
The following hypotheses will be used in the sequel :

(Cd.1) The function f : | x R — R is continuous and

£(-,x()) € CLy(J), for any x € Criy()).
(Cd.2) There exists a constant #; > 0 such that
[f(t,x) = f(£,%)] < mpfx— %]
forany x,¥ € Rand t € J.

We are now in a position to state and prove our existence result for the problem (1.1)-(1.2)
based on Banach’s fixed point theorem.

Theorem 3.3. Assume (Cd.1) and (Cd.2) hold. If

e

£ D WO vl _, 65

then the problem (1.1)-(1.2) has a unique solution in Cg,y(]).

Proof. We show that the operator 7 defined in (3.4) has a unique fixed point in Cg,(]).
Let x,y € Cgy(J) and t € (a,b]. Then, for t € | we have

dt

() — 1 L' (s)|pi(s) — @2(s)
0~ TvO < g i) — g

where ¢; and ¢ be functions satisfying the functional equations

By (Cd.2), we have
[p1(£) — @2(t)]
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Therefore, for each t € (a, b]

. m YOS —y(s)ld
T =Tyl < g | b - o

Bk;
< il = ylleg, Jai (it

~— —
|
<
—
AN
~—
~—
T
[ay

By Lemma 2.5, we have

I (k o4kE
T =Ty < | o) — 9o T eyl
hence
_ I'i(k —Y(a ¥
(96— (@) (Tx() Tyt < [’“ ] i el ]Hx—yucw

mTx(ke) ((b) — p(a))*

which implies that
T2~ Tyley, < [’“rk("?kg‘f;<f>kg)")(“”k] I~ e,

By (3.5), the operator 7 is a contraction. Hence, by Banach’s contraction principle, 7 has a
unique fixed point x € Cg,(J), which is a solution to our problem (1.1)-(1.2). |
4 Ulam-Hyers-Rassias stability
Theorem 4.1. Assume that in addition to (Cd.1), (Cd.2) and (3.5), the following hypothesis holds:
(Cd.3) There exist a nondecreasing function v € Céﬂ/]( J) and x, > 0 such that for each t € ], we have
(j;ﬁk;%) () < koo(t).

Then the problem (1.1)-(1.2) is U-H-R stable with respect to v.

Proof. Let x € C(%;IIJ( J) be a solution if inequality (2.1), and let us assume that y is the unique
solution of the problem

By Lemma 3.2, we obtain for each t € (a,b]

—w(a))é ! _A .
yio) = PR 7005y (@) 1 (725%0) (1),

where w € Céﬂp( J), be a function satisfying the functional equation

w(t) = f(ty(t))-

HDYYy) () = £ (Ly(1); t € (a,b],
Tel Oy ) () = (T30 x) ().
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Since x is a solution of the inequality (2.1), by Remark 2.13, we have

(ﬁpﬁf%) (£) = f (t,x(t)) + o(£), £ € (a,b]. (4.1)

Clearly, the solution of (4.1) is given by

_ -1 .
() = OB G008 a) 4 (25 0 +0)) (),

where @ € Céﬂp( J) be a function satisfying the functional equation

@(t) = f( x(t)).

Hence, for each t € (a,b], we have

|x(t) —y(1)]

IN

<jl9k¢‘w s) — w(s)]) (£) + (jﬂklp ? (t)
e m_ [P(s)]x(s) —y(s)|dt
< ery (t)+krk(l9)/a T

By applying Lemma 2.14, we obtain

() —y(t)] < ex /ﬂ ilkktf;l ¥ ) () — 9] exvo (5)ds,
(1) ¢ (@)
g (b) = (a)F]

< €K,U (t)
< €xpu (t)IEM

1(y (b) —

Then for each t € (a,b], we have

[x(t) = y(8)] < agpev(t),

where ,

150 = KEP [ (9 (0) — 9 (a))F]
Hence, the problem (1.1)-(1.2) is U-H-R stable with respect to v. m|
5 Examples

With the following examples, we look at particular cases of the problem (1.1)-(1.2).

Example 5.1. Taking r — 0, ¢ = %, k=1 ¢(t) =Int,a=1,b=-eand xo = 7, we get a
particular case of problem (1.1)-(1.2) using the Hadamard fractional derivative, given by

({fpéf””x) (t) = <HD1D%+x) () = f(t,x(1)), te (e, (5.1)

() an=n 52)

where | = [1,¢], and

15+ x
f(t,x)—W, te], xeR
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We have

Co(]) = Cyy()) = {u: (Le] > R: (Vinhu € C,R) |,

and
Cly(1) =}, (D ={uwecy, o) ecy,m},

Clearly, the function f € C!, zp( J). Hence condition (Cd.1) is satisfied.
27
For each x,%,y,7 € R and t € ]|, we have

1
_ < _
F(62) = f()] < gl =yl tET,
and so the condition (Cd.2) is satisfied with #; = ﬁ.

Also, we have

_ VT
£= e -1

then, the condition (3.5) of Theorem 3.3 is satisfied. Then the problem (5.1)-(5.2) has a unique

~ 0.00277902842381636 < 1,

solution in Cy ([ e]). The problem is also U-H-R stable if we take 0(t) = e> and x, = r(ls’)
2
Indeed, for each t € |, we get

5

<j15+'1"%> (1) < F‘Eg)

2
= Ky0(t).

Example 5.2. Taking r — 0, & = %, k=1, 9(t) =t a=1b=2and xp = 1, we obtain a
particular case of problem (1.1)-(1.2) with Riemann-Liouville fractional derivative, given by

(1917%) () = (*Dhx) (0 = £ (), 1€ 1,2] 53)
(Jli’“”x) (1%) =1, (5.4)

where | = [1,2], & = ;(r(k—9) +9) = } and

Vit —1|sin(t)|(1 4+ x)

f(t,x) = Got13 ,te], x eR.
We have
Con(]) = Cyy()) = {u: (1,2 > R: (VE—T)u € C(LR)},
and

Chy(D) =L, (0 = {uecy, 0w ecy,n},

Since the continuous function f € C!, 1/;( J), then the condition (Cd.1) is satisfied.
2!

For each x,y € R and t € ], we have

— 1|sin(t
t3) ey < YOy pe,
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1
and so the condition (Cd.2) is satisfied with #; = To6e" Also, the condition (3.5) of Theorem

3.3 is satisfied. Indeed, we have

NG

T 1260 —1 ~ 0.00519014826202797 < 1.

Then the problem (5.3)—(5.4) has a unique solution in C1 v ([1,2]). Furthermore, the hypothesis
L

(Cd.3) can be easily verified by choosing an appropriate function v. As a consequence, by
Theorem 4.1, we can deduce that the problem (5.3)-(5.4) is U-H-R stable.
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