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Abstract. In this paper, we establish a new concentration inequality and complete con-
vergence of weighted sums for arrays of row-wise linearly negative quadrant dependent
(LNQD, in short) random variables. Furthermore, we find that first-order autoregres-
sive processes with LNQD innovations have complete convergence.
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1 Introduction

The concept of complete convergence of a sequence of random variables was introduced by
Hsu and Robbins [3] as follows. A sequence {X,,n > 1} of random variables converges
completely to the constant C if

P(|X,, — C| > ¢€) < oo for all € > 0.
-1

n

By the Borel-Cantelli lemma, this implies X,, — C almost surely (a.s.), and the converse im-
plication is true if the {X,,n > 1} are independent. Hsu and Robbins [4] proved that the
sequence of arithmetic means of independent and identically distributed (i.i.d.) random vari-
ables converges completely to the expected value if the variance of the summands is finite.
Erdos [1] proved the converse. This result has been generalized and extended in several direc-
tions and carefully studied by many authors (see, Gut [3], Kuczmaszewska and Szynal [10],
Ghosal and Chandra [2], Hu et al. [5,6]). Complete convergence for sequence of random vari-
ables plays a central role in the area of limit theorems in probability theory and mathematical
statistics. Conditions of independence and identical distribution of random variables are basic
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in historic results due to Bernoulli, Borel and Kolmogorov. Since then, serious attempts have
been made to relax these strong conditions. For example, independence has been relaxed to
pairwise independence or pairwise negative quadrant dependence or, even replaced by con-
ditions of dependence such as mixing or martingale. In particular, many authors showed that
many results could be obtained by replacing i.i.d. condition by uniformly bounded condition.
We recall that an array {X,;,1 <i < n,n > 1} of random variables is said to be stochastically
dominated by a nonnegative random variable X (write {X,; < X}) if there exists a constant
C > 0 such that

P(|Xy| >t) <CP(X>#H)Vt>0,n>1,1<i<n. (1.1)

The main purpose of this paper, is to discuss the complete convergence for sums of row-
wise linearly negative quadrant dependent (LNQD, in short) random variables under suitable
conditions, since independent and identically random variables are a special case of linearly
negative quadrant dependent random variables. The exponential inequality plays an impor-
tant role in various proofs of limit theorems. In particular, it provides a measure of the
complete convergence for partial sums. The exponential inequality for negatively associated
(NA, in short) random variables has been studied by many authors; see, for example, [5,7,10],
and so forth. The main purpose of this work is to extend the exponential inequality for NA

random variables to the case of LNQD random variables. In addition, we obtain the complete
n

convergence for S, = Z X;, which improves on the corresponding ones of [4-6]. Lehmann [11]

i=1

introduced a simple and natural definition of negative dependence: A sequence {{;, 1 <i < n}
of random variables is said to be pairwise negative quadrant dependent (pairwise NQD) if
for any real €;,¢; and i # j,IP({; > €;,{; > €;) < P(; > €;)IP({; > €;): Much stronger concept
than NQD was considered by Joag-Dev and Proschan [7]: A sequence {{;,1 < i < n} is said
to be negatively associated(NA) if for any disjoint subsets, A,B C {1,2,..,n} and any real
coordinatewise increasing functions f on R4 and g on R®, Cov(f({;,i € A),g(Z;,i € B)) < 0.
Instead of negative association, Newman [12] noticed that his method of proof yielding the
central limit theorem for negatively associated sequence requires only that positive linear com-
binations of the random variables are NQD, i.e., the random variables are linearly negative
quadrant dependent (LNQD). This notion of negative dependence was formulated by New-
man [12] as follows: {{;,i € IN} is a sequence of LNQD random variables if for any disjoint
subsets A, B of IN and positive r;, the random vector (2 1iCi; Erigi) is NQD. Negatively
associated sequences are LNQD and LNQD sequences e{f: not ;f:cessarily NA, as it can be
seen from examples in Newman [12] or Joag-Dev [7].

We note also that negative association and its weaker concepts are of considerable use in prob-
ability and statistics (cf. Joag-Dev and Proschan [7], Newman [12] and the references there
in). Newmann [12] was first to establish a central limit theorem for LNQD random variables,
Kim et al. [9] derived a general central limit theorem for weighted sum of LNQD random
variables.

Firstly, we will recall the definitions of negatively associated, negative quadrant dependent
and linearly negative quadrant dependent sequence.

Definition 1.1. [11] Two random variables {; and (» are said to be negative quadrant depen-
dent (NQD, in short) if for any €1,e2 € R,

P(l1 < e€1,02 <€) <P(f1 < e1)P(f2 < €2). (1.2)
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A sequence {(,,n > 1} of random variables is said to be pairwise NQD if {; and ¢ j are NQD
foralli,je Nt and i #j.

Definition 1.2. [12] A sequence {{,,n > 1} of random variables is said to be linearly negative
quadrant dependent (LNQD, in short) if for any disjoint subsets A, B C and positive r}s,

Z ¢ and Z riCj are NQD.

keA jeB

Remark 1.3. It is easily seen that if {{,,n > 1} is a sequence of LNQD random variables,
then {al, +b,n > 1} is still a sequence of LNQD random variables, where a and b are real
numbers.

Lemma 1.4. [11] Let random variables X and Y be NQD. Then

(i) E(XY) < E(X)E(Y);

(i) P(X >x,Y >y) <P(X>x)P(Y >y);

(iii) If f and g are both nondecreasing (or both nonincreasing) functions, then f(X) and g(Y) are
NQD.

Lemma 1.5. Let {X,,n > 1} be a sequence of LNQD random variables and t > 0, then for each

n>1,

n n
E [ [exp(tX:) | < [E(exp(tX;)). (1.3)

i=1 i=1

n
Proof. For t > 0, it is easy to see that tX; and ¢t Z X; are NQD by the definition of
j=it1

n

LNQD, which implies that exp(tX;) and exp(t Z X]-) are also NQD fori =1,2,..,n —1 by

j=it1
Lemmal.4 (iii). It follows from Lemmal.4 (i) and induction that

E = E

[ Texp(tXi)
i=1

exp(tX;) exp (i tXi>

=2

exp (i tXi>
i=2

exp(tXa) exp (Z tXZ-)
i=3

n
exp ( tXi>
i=3

IN

E [exp(tX1)] E

= E[exp(tX1)]E

< E[exp(tX71)] E [exp(tX2)] E

n

< TTE(exp(rxy)).

i=1

This completes the proof of the lemma.
Throughout the paper, let {X,;,1 <i < n,n > 1} be a sequence of random variables defined
n

n
on a fixed probability space (Q), F,P). Denote S, = Y_X,; and B, = Y E(X2,) for each
i=1 i=1
l1<i<nandn>1.
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2 Main Results and Proofs

2

Lemma 2.1. Let o« > 0and 0 < B < 047' Then
e*—1—u

x2
H 21
B 2.1)

exp(x) —1—x <

forall0 <x <a

Proof.Consider the function
2
¥(x,) =In(1+x+ 3’;) —x.

We need to prove that ¥(x, f) > 0 for all
2

o
0<ﬁ§mand0§x§a.
Take the derivative

¥ (x,p) _ x(x—(2—p))
ox x2

Hence, ¥ is increasing in x on the interval (0,2 — B) and decreasing on the interval
2

(2 — B, ). Note that ¥(0,8) = 0 and ¥(a, B) > 0 since 0 < B < o _1—a
Let

Xini = —anl{x,<—a,} + Xnil{x,|<an) + Wl ix,a,)
Xz,m‘ = (Xm‘ — an)l{xni>a”}, (2.2)

X3pi = (Xm' + lln)l{Xm_<,un}. (2.3)
Here, and in the sequel, 14 denotes the indicator function of the A set in the braces, that is, it
takes value 1 or 0 according to whether or not the sample point belongs to the set.
It is easy to check that X i + X0 i + X3 = Xyi for 1 <i <mn,n > 1 and Xj 1, X102, .-, X1,1n
are bounded by a, for each fixed n > 1.
If {X,;,n > 1} are LNQD random variables, then {X,, ,;,1 <i < n}, p =1,2,3 are also LNQD
random variables for each fixed n > 1.

Theorem 2.2. Let {X,,, n > 1} be a sequence of LNQD random variables with EX; = 0. If there exist
positive constants «, A such that 0 < X; < £,i > 1 then for any A > 0,

AZ n
Xl} < exp { Z]EX?} : (2.4)
1 'B i=1

Proof. By using Lemma 2.1 and Lemma 1.5, we can see that

n n 2 n
IEexp{/\ZXZ} SHIEe)‘X" §exp{/>3ZIEXi2}. (2.5)
j j i=1

i=1 i=1

E exp {)\

1=

Corollary 2.3. Let {X,,n > 1} be a sequence of LNQD random variables. If there exist positive
constants a, A such that
0<X; < %,i>1then forany A >0,

3 (X; — ]EXi)} < exp {); f]EX?} . (2.6)
=1 i=1

1

IEexp{/\
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Proof. It is easily seen that {X, — EX,,n > 1} is a sequence of LNQD random variables
with E(X; — EX;) = 0. By Theorem 2.2, we have

n 2 n
lEexp{)\ (X; — EX;) }gexp{)‘;Z]E(Xi—lEXi)z}
i=1 i=1
/\2 n )
< exp FZ]EXi :
i=1

Theorem 2.4. Let {X,,,n > 1} be a sequence of LNQD random variables such that 0 < X; < Ti>1
where o and A a positive constants. Then for any € > 0 we have

P (i(Xl —EX;) > €> < exp {—Z;ﬁ} . (2.7)

i=1
Proof. By Markov’s inequality and lemma 2.1, we have that for any A > 0.
n n
P(Y (Xi—EX;) >e| < e™Eexps ) (Xi—EX))

i=1 i=1

A2,
exp —A€+FBH .

IN

Taking A = %, we can obtain 2.7

Pr (i(XZ — IEXi) S —€) S Pr <Zn:(—Xi — IE(—XZ')) Z €>

i=1 i=1

< exp {—Z;’B } , (2.8)

n

since { —X,,n < 1} is a sequence of LNQD random variables.

Theorem 2.5. Let {X,;,1 < i < n,n > 1} be an array of rowwise LNQD random variables with
EX,; =0, and {a,,n > 1} a sequence of positive constants. Suppose that
2

oo 2
i) rgexp{—f;n} < oo for some 0 < B < ea_(xﬁ and | X,,;| < a.

(ii) Y E(Xz;) = O(an),
i—1
' n
Then Y _ X,,; converges completely to zero.
i=1
x? o?
Proof. From the inequality exp(x) <1+ x+ E forall0 <x <aand 0 < B < o p—

(see lemma 2.1), we have by (i) that for any A > 0

1
Eexp(AX,) < 1E{1+Axm+ ’B/\2|Xm|2}
1
= 1+2’B/\2]E\Xm|2

exp{ ﬁ/\Z]E\Xm\z}

IN
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The second inequality follows by the fact that 1+t < e for all real number t. It follows by
Markov’s inequality, Lemma 1.5, and (i) that for any A > 0,

n

P (i X, > e> < e MEexp(A Y Xu)
i=1

i=1

n
< ehe [ TEexp(AX.i)
i=1

n
< e Mexp i)@Z]E]Xm-\Z
26 =
e exp i/\ZO(a)
2B !

= exp {—/\s - 215A20(an)} :

IN

ep
20(ay)

LN L[ by @FO)
Ip(zx>) < ep {200 + o T

Choosing A = , we have that for all large n,

Thus by (i)

i P (i Xui > e) < o0, (2.9)
n=1 i

i=1

Since {—X,;,1 <i < n,n > 1} is still an array of row-wise LNQD random variables, we can
replace X,; by —X,,; from the above statement. That is,

L

The result follows by (2.9) and (2.10).

Y Xyi < —s) < 0. (2.10)
i=1

1=

3 Applications of the results to AR(1) model
The basic object of this section is applying the results to first-order autoregressive processes(AR(1)).

3.1 The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xps1 = 0Xp+ Cusr, n=1,2,..., (3.1)
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where {{,,n > 0} is a sequence of identically distributed LNQD random variables with
To=Xo=0,0<El; <oo,k=1,2,..and where 6 is a parameter with |6 < 1. Here, we can
rewrite X, 1 in (3.1) as follows:

Xpy1 = 0" Xo+0"01 4+ 0"+ oo+ Ly 3.2)

The coefficient 0 is fitted least squares, giving the estimator

n
; XjXj-1
[ — (3.3)

& 2
) X7,

j=1
It immediately follows from (3.1) and (3.3) that

(3.4)

1
Theorem 3.1. Let the conditions of theorem (3) be satisfied then for any (EX)? ) < ( positive, with
taking B, = Z EX?, we have
i=1
P(v/n|6, — 6] > R) <
n*(R?*¢2 —EX;

) IEXZ | —ng?
exp{— 4B, b exp{- 4]EX4 '

(3.5)

where IEX]2 < oo and ]EX;-1 < o0.

Proof.
Firstly, we notice that:

It follows that

1/ \/EZZC]‘X]'A
P(nld, — 0] > R) =P s >R

1/n) X7
j=1

By virtue of the probability properties and Holder’s inequality, we have for any € positive

P(\/n|6,—6| >R) < P(1/n ij > R27%) +P(1/n? fxf,l < R?)
j=1 j=1

= ll’(i:X]-Z(Rzgz —HPE - < n27?)

= Iln + IZn~
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Next we estimate [;,, and Iy,.

~

Corollary 3.2. The sequence (8,)nen defined in (3.3) completely converges to the parameter 0 of the
first-order autoregressive process.

Conclusion

The exponential probability inequalities have been important tools in probability and statistics.
In this paper, we prove a new exponential inequality for the distributions of sums of linearly
negative quadrant dependent (LNQD, in short) random variables, and obtain a result dealing
with complete convergence of first-order autoregressive processes with identically distributed
(LNQD) innovations.

Declarations

Acknowledgments

This paper has been presented in the International Conference on Mathematics and Applica-
tions (ICMA’2021), December 7-8, 2021, Blidal University, Algeria.

Availability of data and materials

Data sharing not applicable to this article.

Funding
Not applicable.

Authors’ contributions

The authors declare that the study was realized in collaboration with equal responsibility.

Conflict of interest

This work does not have any conflicts of interest.

References

[1] P. ERDOs, On a theorem of Hsu and Robbins, Ann. Math. Statist., 20(2) (1949), 286-291. DOI

[2] S. GHOsAL AND T. K. CHANDRA, Complete convergence of martingale arrays, ]. Theo. Probab.
11(3) (1998), 621-631. DOI

[3] A. Gut, Complete convergence for arrays, Period. Math. Hungar. 25 (1992), 51-75. DOI

[4] P. L. Hsu anp H. RoBBINS, Complete convergence and the law of large numbers, Proceedings
of the National Academy of Sciences, USA., 33(2) (1947), 25-31. DOI


https://dx.doi.org/10.1214/aoms/1177730037
https://dx.doi.org/10.1023/A:1022646429754
https://dx.doi.org/10.1007/BF02454383
https://dx.doi.org/10.1073/pnas.33.2.25

22 Z. Kaddour, A. Belguerna and S. Benaisa

[6] T. C. Hyu, D. L1, A. RosaLsky AND A. VOLODIN, On the rate of complete convergence for
weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl., 47(3)
(2001), 455-468. DOI

[6] T. C. Hu, A. RosaLsky, D. SzyNAL AND A. VOLODIN, On complete convergence for arrays of
rowwise independent random elements in Banach spaces, Stochastic Anal. Appl., 17(6) (1999),
963-992. DOI

[7] K. Joac-Dev anD E. ProscHAN, Negative association of random variables with applications,
Ann. Statist., 11 (1983), 286-295. DOI

[8] T-S. Kim anD H-C. Kim, On the exponential inequality for negative dependent sequence, Com-
mun. Korean Math. Soc., 22(2) (2007), 315-321. DOI

[9] M-H. Ko, D-H. Ryu, T-S. Kim anD Y-G. CHo1 , A central limit theorem for general weighted
sums of LNQD random variables and its applications, Rocky Mountain J. Math., 37(1) (2007),
259-268. DOI

[10] A. Kuczmaszewska AND D. SzyNAL, On complete convergence in a Banach space, Internat. J.
Math. Math. Sci., 17 (1994), 1-14. DOI

[11] E. L. LEHMANN, Some concepts of dependence, Ann. Math. Statist., 37(5) (1966), 1137-1153.
DOI

[12] C. M. NEwMAN, Asymptotic independence and limit theorems for positively and negatively de-
pendent random variables, Institute of Mathematical Statistics Lecture Notes-Monograph
Series, 5 (1984), 127-140. DOI


https://dx.doi.org/10.1137/S0040585X97979858
https://doi.org/10.1080/07362999908809645
https://dx.doi.org/10.1214/aos/1176346079
https://doi.org/10.4134/CKMS.2007.22.2.315
https://dx.doi.org/10.1216/rmjm/1181069330
https://doi.org/10.1155/S0161171294000013
https://dx.doi.org/10.1214/aoms/1177699260
https://doi.org/10.1214/lnms/1215465639

	Introduction
	Main Results and Proofs
	Applications of the results to AR(1) model
	The AR(1) model


