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Abstract. In this work, we consider the nonparametric estimation of the probability
density function for nonnegative heavy-tailed (HT) data. The objective is first to pro-
pose a new estimator that will combine two regions of observations (high and low den-
sity). While associating a gamma kernel to the high-density region and a BS-PE kernel
to the low-density region. Then, to compare the proposed estimator with the classical
estimator in order to evaluate its performance. The choice of bandwidth is investigated
by adopting the popular cross-validation technique and two variants of the Bayesian
approach. Finally, the performances of the proposed and the classical estimators are
illustrated by a simulation study and real data.

Keywords: Bayesian bandwidth selector, BS-PE kernel, Cross validation, Gamma ker-
nel, heavy-tailed data, MCMC method.

2020 Mathematics Subject Classification: 62G07, 62G99.

1 Introduction

In this work, we are interested in estimating the heavy-tailed data density with nonnegative
support [7] and [8]. This data type requires special methods because of its specific charac-
teristics: slow decay to zero and rare observations in the tail. As the parametric methods do
not meet the characteristics of this data type, the nonparametric kernel method is proposed.
The efficiency of the latter depends on the choice of its two parameters, the kernel K and the
smoothing parameter h. The most used kernels in the literature are the symmetric kernels,
such as the Gaussian kernel and the Epanechnicov kernel for unbounded support densities.
However, when we want to estimate densities with unbounded support, the classical kernel
estimator becomes non-consistent, because of edge effects. This problem is due to symmetric
kernels, which assign a weight outside the support when the smoothing is considered near
the edge. To address this problem, several authors have proposed a new family of asymmetric
kernels. See [2] (gamma and modified gamma kernels), [6] (inverse and reciprocal inverse
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Gaussian kernels), [3] (lognormal and Birnbaum-Saunders (BS) kernels) and recently [4] pro-
posed a Generalized Birnbaum-Saunders (GBS) kernel for estimating densities with nonneg-
ative support, which includes BS-power-exponential (BS-PE) and BS-Student (BS-t) kernels. It
is proposed for analyzing nonnegative heavy-tailed (HT) data.
The performance of the associated kernel density estimator depends crucially on the smooth-
ing parameter, which controls the smoothing quality of the estimator. Classical methods have
been proposed for the smoothing parameter choice. The cross-validations methods are inter-
esting in practice because they are guided only by observations. However, the drawback of
these methods is that they tend to provide under or over-smoothed estimators when the data
are small or medium size or when we want to estimate complex functions. So, to deal with
this problem, the Bayesian approach has been proposed.
As a base for this work, we followed the idea in [9], where the authors proposed a subdivision
of the HT dataset into two subsets (two regions) with low and high density (Low Density
Region (LDR) and High Density Region (HDR)), and associated to each region a smoothing
parameter (hLDR and hHDR). We propose an estimator composed of two different kernels,
gamma, and BSPE. The gamma kernel is associated with the high density region, and the
BSPE kernel is associated with the high density region (see also [5]). The new Gamma-BSPE
kernel density has two smoothing parameters (bandwidths) that will be selected using the
adaptive Bayesian approach. A comparative study is conducted with the work of [9], where
they considered a single BSPE kernel for both regions.
The paper is structured as follows. Section 2 presents the classical BSPE kernel estimator. In
section 3, we introduce the new gamma-BSPE kernel estimator. Section 4 presents the proce-
dure proposed for deriving the adaptive bandwidths. Simulation studies and application of
real data are presented in Sections 5 and 6. Section 7 concludes the paper.

2 The classical BS-PE Kernel estimator

Given a random sample X1, . . . , Xn, the BS-PE kernel estimator of an unknown pdf f with
nonnegative support is given by:
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where x > 0 is the point where the density is estimated, h > 0 is a smoothing parameter and
ν > 0 is a fixed parameter.
The expressions of the bias and variance for f̂BS−PE(x) are derived by Marchant et al. [4]. The
asymptotic bias when h→ 0 is given by:
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3 The gamma-BSPE Kernel estimator

In this section, we present a new density estimator for heavy-tailed data, which is flexible
on the domain near the zero boundary and estimates the heavy tail of the distribution. The
latter is based on: dividing the observations into two regions, namely the low-density region
(LDR) and high-density region (HDR), and assigning two different bandwidths to these two
regions [9]. We also propose to combine two asymmetric gamma and BS-PE kernels ( [2]
and [4]) as follows: associate a gamma kernel for the high-density region (HDR) (near bord)
and BS-PE kernel for the low-density region (LDR).

3.1 Gamma kernel

The gamma kernel is nonnegative and possesses good boundary properties for a wide class
of densities. It is given by:

KGam(x,h)(y) =
y

x
h

Γ(1 + x
h )h

1+ x
h

exp
(
−y

h

)
1{0≤x<∞}(y), (3.1)

where Γ(y) =
∫ ∞

0 ty−1 exp(−t)dt is the classical gamma function with y > 0, and 1{0≤x<∞}
denotes the indicator function.
The classical gamma kernel estimator of an unknown pdf f with nonnegative support is given
by:

f̂Gam,h(x) =
1
n
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3.2 Gamma-BSPE kernel estimator

After dividing the data set into two subsets, we present the estimator associated with this
subdivision by associating different kernels to the two regions, gamma kernel for the HDR
region and BSPE for the LDR region. The gamma-BSPE Kernel estimator is given by:

f̂h(0),h(1)(x) =
1
n

n

∑
j=1

{
IjKx,h(1)(xj) + (1− Ij)Kx,h(0)(xj)

}
,

=
1
n

n

∑
j=1

{
IjKGam(x,h(1))(xj) + (1− Ij)KBS−PE(x,h(0))(xj)

}
. (3.3)

where

Ij =

{
1, i f xj ∈ S(HDR), j = 1, . . . , n;
0, else.

S(HDR): the observations of the high-density region (HDR), S(LDR): the observations of the
low-density region (LDR)
and h(1) denotes the bandwidth assigned to the observations of S(HDR), and h(0) is the band-
width assigned to the observations of S(LDR).
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4 Adaptive Bayesian bandwidth selection

In this section, we derive the variable Bayesian bandwidths at each subset (S(HDR) and S(LDR))
(Bayesian adaptive approach) for Equation (3.3) in the kernel density estimation context, with
positive support using the gamma-BSPE kernels. We treat h(1) and h(0) as random quantities
with prior distributions π1(·) and π0(·). As proposed by [7], we assume that the variable
bandwidths h(1) and h(0) have prior distributions with parameters α, β, and ν = 2 ; this prior
is defined by

π(h(0)) =
ν

Γ(α)βα

1
(h(0))αν+1

exp
(
−1

β(h(0))ν

)
, h(0) > 0 (4.1)

and
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1
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exp
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)
, h(1) > 0 (4.2)

The posterior of h(1) and h(0) for given {x1, x2, . . . , xn} is

π̂(h(1), h(0)|x1, x2, . . . xn) ∝

{
n

∏
i=1

f̂h(0),h(1)(xi)

}
π(h(0))π(h(1)). (4.3)

Under the squared error loss, the Bayes estimator of the smoothing parameters h(1) and h(0)

is the mean of the posterior density given by:(
ĥ(1), ĥ(0)

)
=
∫ ∫

(h(1), h(0))π̂(h(1), h(0)|x1, x2, . . . xn)dh(1)dh(0). (4.4)

We cannot derive an analytical expression as the estimate of
(

ĥ(1), ĥ(0)
)

from the formula
(4.3) and (4.4). However, we propose using the Markov Chain Monte Carlo method (MCMC)
for the approximation. We use a random walk metropolis algorithm to sample

{
h(1), h(0)

}
and the sampling algorithm is briefly described below :

Step 01 Initialize h(0), where h =
(

h(1), h(0)
)

.

Step 02 For i ∈ {1, . . . , M},

a) Generate h̃ ∼ truncate Normal (h(i−1), σ2).

b) Calculate the acceptance probability α = min{1, π(h̃/x)
π(h(i−1)/x)

truncate Normal(h(i−1),σ2)

truncate Normal(h̃,σ2)
}.

h(i) =

{
h̃, µ < α, µ ∼ U[0,1];
h(i−1), else.

Step 03 i = i + 1 and go to step 2.

Reject (h(0), h(1), . . . , h(M0)) which represents burn-in period, and estimate h by

ĥ =
1

M−M0

M

∑
i=M0+1

h(i).
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Table 5.1: Distributions in the simulation study.
Distribution Density Parameters

D1 lognormal(µ, σ) f1(x) = 1
xσ
√

2π
exp

(
−1
2σ2 (ln(x)− µ)2

)
. (µ, σ) = (1, 1)

D2 Burr(k, r) kxk−1

(1+rxk)r+1 (k, r) = (3, 1)

D3 Mixture of pGamma(α1) p× xα1−1 exp(−x)
Γ(α1)

+ p× xα2−1 exp(−x)
Γ(α2)

(α1, α2, p) = (2.5, 10, 0.5)
and pGamma(α2)

5 Simulation study

In this section, we examine and compare the performances of the adaptive bandwidth ap-
proach for

(
gamma-BSPE kernel estimator and BSPE kernel estimator proposed in [9]

)
, with

a global bandwidth approach
(
bayesian global and classical UCV method

)
, by using several

nonnegative heavy-tailed distributions.
The optimal bandwidth selected by classical method UCV was obtained by :

hUCV = arg min
h

UCV(h),

where :

UCV(h) =
∫

f̂ 2
{h(0),h(1)}(x)dx− 2

n

n

∑
i=1

f̂{h(0),h(1),i}(Xi),

and f̂{h(0),h(1),i} being computed as f̂{h(0),h(1)} by excluding Xi.
We consider the target densities labeled D1, D2 and D3. Functional forms of these densities
are given by: table 5.1.
This comparison is based on the data simulated from D1, D2 and D3 and five samples sizes

n = 10, 25, 50, 100 and n = 500, using Nsim = 100 replications. We examine the performance
of these methods via the integrated square error (ISE) criterion, defined by:

ISE =
∫
{ f̂h(x)− f (x)}2dx. (5.1)

Table 2 presents the average ISE (ISE) and the average bandwidth (h) based on 100 replications
for the estimators of D1, D2 and D3. The burn-in period contains M0 = 1500 iterations and
the following M = 3000 iterations were recorded. From Table 2, we observe that:

• For all estimators, the means of ISE and h based on 100 replications decrease as sample
size n increases.

• For all sample sizes and models considered, the adaptive Bayesian approach (BSPE and
Gamma-BSPE) outperforms the global Bayesian approach and the classical UCV method.

• We notice that, mean h associated with the high density region (HDR) is smaller than
the mean h associated with the low density region (HDR) for both adaptive Bayesian
approaches (BSPE and Gamma-BSPE).

• A comparison between the UCV and global bayesian approaches. We notice that for
almost all the considered models, the global bayesian approach is better than the UCV
for small sample sizes, but for medium and large sample sizes, the UCV works better.
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Table 5.2: Average ISE (ISE) (with average h (h) brackets) based on 100 replications for D1,
D2 and D3 distributions

Density n ISEUCV ISEBayes−global ISEBayes−AdapBSPE ISEBayes−AdapGam−BSPE

(hUCV) (hBayes−global) (hHDR, hLDR) (hHDR, hLDR)

10 0.07298109 0.03339965 0.03116670 0.02446340
(1.29691400) (0.41601620) (0.41572240,0.43166210) (0.42456180, 0.43005550)

50 0.01992840 0.00867429 0.00944265 0.00944339
D1 (0.66709700) (0.56194740) (0.21892850, 0.35730160) (0.15519320, 0.35793270)

100 0.00812029 0.013134670 0.00545582 0.00481987
(0.14878390) (1.23848300) (0.18921140, 0.26361370) (0.12187420, 0.26551030)

250 0.00464116 0.01115482 0.00421646 0.00226334
(0.09514660) (1.09769077) (0.90787800, 0.25401930) (0.07194098, 0.24740547)

10 0.18070430 0.09793666 0.08833576 0.09152228
(0.63006541) (0.47316392) (0.42567424, 0.42613821) (0.35051259, 0.41623607)

50 0.03882595 0.02937818 0.01933364 0.02062382
D2 (0.06591049) (0.23530874) (0.33260233, 0.33640982) (0.28967948, 0.34092399)

100 0.04370892 0.01372667 0.00810524 0.01026966
(0.02410700) (0.20874785) (0.24873629, 0.29847000) (0.21676625, 0.29696059)

250 0.02080307 0.00948743 0.00499513 0.00684447
(0.018870869) (0.18647112) (0.18162649, 0.1989421610) (0.16955425, 0.18021157)

10 0.0232216915 0.02009696 0.01920234 0.01701824
(1.167033916) (0.80816964) (0.36240572, 0.92421295) (0.37011558, 0.40727976)

50 0.02737774 0.00871603 0.00807053 0.00781293
D3 (1.09355602) (0.15824070) (0.15292585, 0.29172937) (0.15211303,0.27504394)

100 0.015952670 0.00477119 0.00370813 0.00364616
(0.08969938) (0.16248214) (0.10336488, 0.29077918) (0.10264756, 0.26801841)

250 0.00968110 0.00428933 0.00238951 0.00237538
(0.03910971) (0.12370519) (0.07658197, 0.19733326) (0.09667585, 0.16960317)

• The adaptive Bayesian approach with two different kernels (gamma for HDR and BSPE
for LDR), outperforms the adaptive Bayesian approach with the same kernel (BSPE for
both HDR and LDR regions), for models D1 and D3 for almost all sizes considered.
Contrary to the D2 model, where the adaptive Bayesian approach with the same kernel
(BSPE) is better.

The comparison is also given in Figures 5.1 and 5.2, presenting the plots of the pdf es-
timates for D1, D2 and D3, with UCV and Bayesian method for the choice of bandwidth
parameter. The results are given for sample size n = 200 and one replication. We can observe
that the smoothing quality is satisfactory for the adaptive Bayesian approach, practically for
the three considered models. The adaptive Bayesian Gamma-BSPE approach reproduces well
the bimodality of the D3 model. We also notice that the smoothing quality by the classical
UCV approach is poor for the D2 model.
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Figure 5.1: The estimators of heavy-tailed densities D1 and D2 with n = 200, with BS-PE
kernel and (global, adaptive and UCV) methods.

Figure 5.2: The estimators of heavy-tailed densities D3 with n = 200, with BS-PE kernel and
(global, adaptive and UCV) methods.
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Table 6.1: Descriptive summary of the Web-traffic data set [8].
Data set n Max Min Median Mean SD CS CK

Web-traffic 312 65.613 0.042 1.362 4.081 8.520 5.044 27.897

Table 6.2: Descriptive summary of the vinyl chloride data set.
Data set n Max Min Median Mean SD CS CK

vinyl chloride 34 8.000 0.100 1.150 1.879 1.952 1.603 5.005

6 Application to real HT data

In this section, we illustrate the performance of the proposed estimator on two real HT data
sets defined below:

• Web-traffic HT data: These data represent the size of different web files (pdf, html,
images, video, etc.) measured in Kilo Octet from the world cup (French, June 1998)
server. These data are collected for n = 312 queries [8].

• Vinyl chloride data: These data present the vinyl chloride data obtained from clean
upgrading and monitoring wells in mg/L; this data set was used by [1].

Tables 6.1 and 6.2 provide the description summaries for Web-traffic and vinyl chloride data,
respectively.

Now, we apply kernel estimators to estimate the density for traffic web and vinyl chloride
data based on different selection methods of the smoothing parameter (UCV, Bayesian(global),
and Bayesian adaptive(BS-PE(ν = 2) kernel and Gamma-BSPE(ν = 2) kernel)). The Bayes
variable bandwidths estimates were obtained with prior parameters α = 2.5 and β = n4/5.
The figure 6.1 shows, that all the methods can reproduce the unimodality of these data. We
observe that the smoothing quality is satisfactory for almost all the considered methods.

Conclusions

In this paper, we have proposed a new gamma-BSPE kernel estimator. It is based on the
principle of subdividing the HT dataset into two regions (LDR and HDR) and associating to
each region the gamma and BSPE kernels. The smoothing parameter is determined using
the adaptive Bayesian approach. The simulation study showed that the adaptive Bayesian
approach with the gamma-BSPE kernels and the same BSPE kernels performs better than the
global Bayesian and the classical UCV approaches. This study also showed that in some cases,
the estimator with the gamma-BSPE kernels performs better than the estimator with the same
BSPE kernels for both regions, contrary to other cases.
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(a) Web-traffic data (b) vinyl chloride data

Figure 6.1: kernel estimator for Web-traffic and vinyl chloride data with sample size n = 312
and n = 34 respectively.
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