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Abstract. In this paper, a numerical method based on a finite difference scheme is
proposed for solving the time-fractional diffusion equation (TFDE). The TFDE is ob-
tained from the standard diffusion equation by replacing the first-order time derivative
with Caputo fractional derivative. At first, we introduce a time discrete scheme. Then,
we prove the proposed method is unconditionally stable and the approximate solution
converges to the exact solution with order O(At*~*), where At is the time step size and
« is the order of Caputo derivative. Finally, some examples are presented to verify the
order of convergence and show the application of the present method.

Keywords: Time-fractional diffusion equation, Caputo derivative, Convergence rates,
Stability.
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1 Introduction

In recent years, the use of fractional ordinary differential equations (FODEs) and fractional
partial differential equations (FPDEs) in finance problems [10, 21,22], hydrology problems
[1,3-5,26], physics problems [2,6-8,12,18-20,23,24,29], and mathematical models have become
increasingly popular. The numerical and the analytical solutions of the time-fractional partial
differential equations are studied using Fourier-Laplace transforms or Green’s functions (see
e.g. [9,16,25,27,28]). However, published papers on the numerical solution of the time-
fractional diffusion equation (TFDE) are limited. The authors of [11] have proposed finite
element methods for time-fractional partial differential equations; the authors of [17] have
used a meshless method for the(TFDE); Liu et al. [15] used an explicit finite-difference scheme
for TFDE (this method is a lowe-order method); Lin and Xu et al. [14] have proposed finite
difference/spectral methods for TFDE, they used Legendre spectral methods in space and a
finite difference scheme in time and show that the methods for « order TFDE have convergence
rate O(At>~* + N~ /(At)*), where At, N and m are the time step size, polynomial degree
and the regularity of the exact solution respectively. The convergence rate in their paper is not
optimal.

S Email: aliahmadmosavil370@gmail.com

ISSN (electronic): 2773-4196
© 2022 Published under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 International Li-
cense by the Institute of Science and Technology, Mila University Center Publishing



n2t.net/ark:/49935/jiamcs.v2i3.46
http://jiamcs.centre-univ-mila.dz/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-4899-0168
https://mathscinet.ams.org/msc/msc2020.html

16 S. A. A. Mosavi

In this paper, we propose a numerical scheme based on the finite difference method for
solving time-fractional diffusion equation and prove an optimal convergence rate. We consider
the time-fractional diffusion equation of the form:

u(x,t) %u(x, t)
ot dx?

subject to the boundary and initial conditions:

= f(x,1), (x,t) €10,1] x [0, T], (1.1)

u(0,) =u(1,t)=0, te (0,1, (1.2)

u(x,0) = up(x), x €1[0,1], (1.3)

X
where 0 < a < 1, up and f are given smooth functions, the time-fractional derivative a %gf’t) is

the Caputo derivative defined by

ou(x,t) 1 /t du(x,s) ds
ot* I'(1—wa)Jo

= Pt (1.4)

2 The numerical method for the TFDE

In this section, we will estimate the time-fractional derivative % at t,,11 by forward finite

difference approximation to discretize the time-fractional derivative. Let t,, := mAt, m =
0,1,..., M, where At := T /M is the time step and M is a positive integer.

(%, tyg1) 1 /fmﬂ ou(x,s) ds
ot CT(1—a) Jy 9s  (tmy1— )"
1 u /tk+1 au(x,s) ds
R . 2.1
M0 &b a5 Gunor b
For the forward finite difference, we have
ou(x,s u(x, teyrq) — u(x, ty
00 | = M) MR | o, 22)
Substituting (2.2) into (2.1), we obtain
0" (x, ty+1) _ 1 UL /tk+1 ou(x, tpyq) — u(x, ty) ds L REH
otu I(l—a) = Jy At (tmyr —s)* A
1 oou(x, taq) —u(x, ) [l ds i1
= RY 2.
N A R

where R’X{l is the truncation error, which we will get it later in proposition 2.1, for the integral
at the RHS of (2.3), we have

tey1 ds b1tk —a
/ T = / ptdp
t ( m+1 = S) En1 — g

= — . (2.4)

By using t,, = mAt, we have

tmi1 =t = (m—k)At,  ty —t = (m+1-k)At, (2.5)
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Substituting (2.5) into (2.4), we obtain

/tk+1 ds - (m+1-— k)Atl_'X) — ((m— k)Atl_a)
t (tm—i-l - S){X B I—a
At~ 1— 1—
= 1=k i, 2o

substituting (2.6) into (2.3), we obtain

o*u(x, ty, A—(t m
u(;t” +1) — (1_a)(r((1)_lx kz(;)am k X tk+1) —u(x tk))‘i‘RIELl
- FA(Z_“_(Q) é”m—k(”(x/ tepr) — u(x, ) + RkH. (2.7)

Here a; := (k+1)1"% —k'"*,k = 0,1,..., M. Let v = ['(2 — &) At*. Substituting (2.7) into (1.1),
the following form is obtained

%u(x, ty,
u(x, tiy1) — v <(8x2+1)>
(X, t) — zak b ket — 4(% b)) + 1 f (% b)) +RY,  (28)

where
R < coat?,

and Cj is a constant.
Let u™ be the numerical solution to u(x,t,) and f™*! = f(x,t,1), by removing the small

(1)

term R,, from (2.8), we can create the following discrete scheme for solving 1.1.

azum—H m
Wity (Tha ) = L =01, M. @9)

Proposition 2.1. The truncation error Rk+1 has the following form

fer1 25 — ¢ t
e 1_a E/k“ 27 = gs 1 O(AR)] < AR, (2.10)

m+1 - S)

Where Cy and Cy are constant.

proof: First we show that

1 m t 25 — —
Rlxtrl < C Z/kﬂ S — try1 tde+O(At2) -

r(1—a) k=0t (tmy1 — )"

By using the Taylor series, we have

u(x, 1) —u(x t) _ ou(x,ty) | Atou(x, k) )
At =~ ‘T2 e OB

In addition, from (2.3), the truncation error has the following form

1 trr1 au(x,s) au(x, tk) At azu(x, tk) Js
k+1 . + B _ AtPu(x, ty) A
Ryt = I(l1—«) /t ( s ot ) Y% + O(At) e (2.11)
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Now we write the Taylor expansion of a”( ) at t
ou(x,s)  ou(x,ty)

s ot
Substituting (2.12) into (2.11), we obtain

Ry = F(ll—oc) i /:H <( SThe %)a ua(fz s +O(At2>) ((tmjs_ s)“)

k=0

1 m tev1 Qg — ter1 — tk azu(xr tk) 2 > ( ds >
_ .+ + O(At T A |
le_a>§%ﬁ; ( 2 ot SVANCESE

the absolute value of the truncation error is as follows

0%u(x, ty)
ot2

+ (s —t) +0((s — t)?), (2.12)

1 Mt 25 — g — b 9%u(x, ty)
RE+1 < / k+1 — bk ) 4 2
ar =G T(1—a) =)y 2 oz ds O],
2
where C; < § ‘a ”a(t’;’t") )

Now, we show that

1_‘(11_06) m /tk+1 2s — tk2+1 — I aZMEngZ, tk)dS + O(AtZ) < Cz(AtZ_“),
k=07t
We have
1 te+1 Qg — _ Zu x
r(11—a)k 0/ : thH i a(tzltk)dS—FO(AtZ)
1 — ) kér 2k+1)(At)27a [(m—k)lﬂ" —(m+1 —k)1*“}
1-6( kio Atz a[(k—i—l)(ﬂ’l—k)l_“_k(m_|_1_k)l—¢x]
( —w) :0 1-— oc)z( — ) <At>27“ [(m - k)zw —(m+1- k)2*”‘]
2 o
F((AZ @) [(m 4+ 1) 2 o (= 1) (- 2)1 7 417
2 At)
TG-a) n+ 17
- IE(At)Z "‘) [( ) “ Z(ml—tx + (m— 1)1—“ + (m— 2)1—zx T 11_04) B ﬁ(m N 1)2—04 '
Let
pOm) = (m+ 1)1 20m' % o (= 17 (= 2)17 117 = 5= (1)

2 —
We will show that the |p(m)| is bounded for all « € [0,1] and all m > 1, as proven in the
following lemma.

Lemma 2.2. forall & € [0,1] and all m > 1, we have

[p(m)] < Cs,

where Cs is a constant independent of «, m.
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Proof. First, for « = 0 and m > 1, we will show that p(m) = 0.
We have

p(m)=(m+1)+2(m+(m—1)+ (m—2) +..4+1) — (m+1)?

:m+1+2[%(m+1)] — (m+1)?

= (m+1)>— (m+1)>=0.

Now we prove for a € (0,1], we can write p(m) as follows

plm) = (m+ 1) 2 (m = 1) (=2 1) (1) = Y b

where 2
bi=(i+ 1)+ = S (1) =27,
2—«
It suffices to prove that the ) ;°,b; convergent. It is well known that the series 2 5 is a
i—0 1

geometric series and converges for all § > 1. Now we will show that the |b;| < 11% for big
enough i. For i > 2, we have

o) o2 (1))

10w (-a)@(a-11

|bi

-
|
2

1
:z‘l”‘!1+1+(1—zx)i+<

(21' - ;) (1 - a)(~a) 3 + (; - j) ( —uc)(—zx)(—oc'—l)i—k...'

i
11 1 2+1)1  3(a+1)(a+2)1

<Y (1 - 1 = +...

<i 3!( ) < t—F 5t 20 > +

The proof is completed. o

3 Stability of the method

In this section, by using the following lemma, we will prove the proposed method is uncon-
ditionally stable, in other words, we will prove the stability of Eq. (2.9).

Lemma 3.1. [13] Let Q) be a bounded domain in R" with piecewise smooth boundary oQ), if V and U
are two functions defined on the closed region containing () and have continuous partial derivatives,
then

ou s oV
V—dQO = 14 )dS — —dQ) .
/Q o, /BQ Ucos( ', x;)dS /Q UaXi , (3.1)

Where 7 is the outward vector, dS stands for the surface area element on dQ).

Lemma 3.2. The coefficient, a;, satisfy
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1. a;, >0, 1=1,2,..
2. a; > ai11, i=0,1,2,..

Proof. Let
s(i):=a; = (i+ 1) —i'"", i=0,1,2,..

We have
S =1-a)[(i+1)*—i " <0=a;>a;1, i=01,..

Lemma 3.3. [30] Ifu™ € HY,m = 0,1, .., M is the solution of (2.9), then
0

7l < [l + va, Ly max [1£]2

Proof. We will prove this Lemma by mathematical induction. When m = 0, by using (2.9), we

will have .

ou
1 _ .0 1
W=737=U +7f

Multiplying the above relation by u! and integrating on (), we will obtain the following rela-

tion
1.1 9%u! 1 0,1 1.1
() = (G ) = (%) + (),
ie.

12 9%u! 1\ _/,0 .1 1,1
w2 = ﬁ’” = (u,u ) +y(f,u).

By using Lemma 3.1, we get

?ul 9 (oul\ ; ou' oul
Uy = uldo = UM 40y
<ax12’” ) / 9x1 (8x1> 20 8x1 / 9x7 0x1
1 1
_ [ ou o Ml ey — (2 ol
Q 9x1 9x1 dx1’ 0xq

Substituting (3.3) into (3.2), we obtain

?ul ?u!
4y (G i) = 00 o),

ul 9%l

Since v > 0 and (W’ W) > 0, we will rewrite the (3.4), as follows
1 1

[u'll2 < (%, ul) + A(fL ),
using Schwarz inequality, we get
Yo < |[u® Yo < [|u® ay’ 2.
1l < Nl + [ 2 < flulf2 +vag ™ max [I£]]2
Suppose now we have

HukH2< HuOHz—i—'yuk 1 max HfHZ, k=1,2,...,m.
0<I<

),

(3.2)

(3.3)

(3.4)

(3.5
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Multiplying (2.9) by ! and integrating on (), we will obtain

m—+1(2 aZum+1 m—+1 m ,,m+1 = m—k , m+1
I = (S s w1 = (1) () (X g — )™
Xon+1 k=1

+ (ﬂmuol um 4 1) + ,Y(fm+1’um+1)’
By using Schwarz inequality and the inequality in Lemma 3.2
ay > g1, k=1,2,.. m.

We obtain

m—1
" 2 < (U= an)|[u™ ]2+ Y (ax — axpa) [0 |2 + @ [10]]2 + 7| ]o-
k=1

By using (3.5), we get

m—1
e < e (o= +1) g I

m—1
< 1130 _ ~1 1
< |u’]]2 + (k;(ak 1) dy, +1) Og}%\hf |2

< 0 -1 ) .
< 1]+ 1" ma (17

Hence, the proof is completed. m|

Now, we will prove the stability theorem, to simplify the notations without loss of gener-
ality, let U™ be an exact solution of (2.9), we consider the case f = 0 in stability analysis.

Theorem 3.4 (Stability theorem). The numerical implicit method defined by (2.9), is unconditionally
stable.

Proof. Denote the error:

gm =um—um (3.6)
It satisfies
m+1 826m+1 m el m—k 0
¢ =y = (=) + ) (o — aa)S" ™ + an”, (3.7)
k=1

and
"an =0, te[o,T].

By using Lemma 3.1, similar to the proof of Lemma 3.3, we will obtain
18" < 11E°], m=1,2,.., M. (3.8)

This proves the theorem. m]
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4 Convergence of the method

In this section, we will show that the approximate solution converges to the exact solution
with order O(At?~*) and we will obtain an error bound for the time discrete scheme.

Theorem 4.1. Let u™,m = 0,1,2, ..., M be the approximate solution of Eq. (2.9) and the u(x, "), m =
0,1, ..., M be the exact solution of Eq. (1.1) with the above initial and boundary condition, then we have
the following error estimates

lu(x, t™) — u™||, < C*(AF™), m=1,2,.. M. (4.1)
Where C* is, constant.

Proof. Denote
e =u(x, ") —u". 4.2)

From (2.8) and (2.9), we get

2 .m+1
em—i—l d%€

m
— Vg =€ = L ak(e" T = ") + R(AY), (4.3)
k=1

e’ =0, e"oq =0,

by using Lemma 3.3, we obtain

-1 I 2
e[z < Ly max [|R'|l2 < Ca(At)2 (@)
Because
. 1 T m—% T 1 - 1
I, Bt = e )T e (D (m/m 1 1w )

thus, a;ll(At)z is bounded, from (4.4), we will obtain
[|u(x, ") —u™|[; < C*(A™™), m=1,2,...,M. (4.6)

This proves the theorem. m]

5 Numerical results

In this section, we present an example to verify our theoretical finding. In this example, we
will check the convergence of the numerical solution with respect to At.

Example 5.1. We consider the same equation as that in [11]:

ol u(x,t)  %u(x,t)

o« ox2 = f(x’ t)l (X, t) € [O, 1] X [0, 1]; (51)

with )
flxt) = TG—a)

iy 2 "%sin(2mx) 4 4m*t2sin(27mx),

subject to the initial condition ug(x) = 0 and the homogeneous boundary conditions: u(0,t) =
u(1,t) = 0.
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Table 5.1: The error and the convergence rate for « = 0.1
M N The error Convergence rate
30 30 0.00355 —
60 60 8.90771x10~* 1.99469
100 100 3.20611%10~% 2.00041
150 150 1.42463 x10~* 2.00053
200 200 8.01563 107> 1.99910

Table 5.2: The error and the convergence rate for « = 0.5
M N  The error Convergence rate
30 30 0.00358 —
60 60 9.05205%10"* 1.98357
100 100 3.28401x10~* 1.98497
150 150 1.47078 10~ 1.98111
200 200 833012%107° 1.97614

The exact solution to the problem is given by u = t?sin(27x). Taking A(t) = 4; and h = %,
where N and M are the numbers of meshes in space and time, in this example, we use N = M.
The % is approximated as follows:

O%u(x, tu1) _ u(Xng1, bma1) — 2u(Xn, tug1) + 1 (Xp—1, tugr)
0x2 h? ’

The rates of convergence are computed by

Ln (enew / €old )

rate = Ln ((At)new/(At)old) '

The errors in our examples are denoted by max{|u™ — U"|: m = 1,2, ..., M}. The convergence
rate and the errors for different x and M are presented in Tables (5.1-5.4). We can see that
the convergence rate for time is close to At?>. The numerical results are consistent with our
theoretical results in theorem 3.4. The comparison of the exact and approximate solutions
with & = 0.1 at different M and the comparison of the exact and approximate solutions with
a = 0.9 at different M are shown (see Figs5.1 and 5.2). All the calculations in this example are
performed using MATLAB 2016.

Table 5.3: The error and the convergence rate for « = 0.7
M N  The error Convergence rate
30 30 0.00369 —
60 60 9.55878 x10~* 1.94872
100 100 3.56404 x10~% 1.93132
150 150 1.64371%10~* 1.97877
200 200 9.55343x107° 1.88625
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151 151
+  Numerical solution +  Numerical solution
O Exactsolution O Exact solution
1 4 B 1r
“{:rpqﬁﬁ%*%
] [
0.5 & =] 05
® L
L] ]
£ @
0 E] of
& Lzl
] L2
@ &

F “a & 3

0.5 FF-‘]; a;f' 0.5

=Y J:E

AF e ik

156 156

@) M = 60

+  Numerical solution
O Exactsolution

' L L
o 01 02 03 04 05 06

(c) M = 150

n ' L i
07 08 09 1

o] 0 0.2 03 04 05 08 0.7 o8 08 1

(b)

+  Numerical solution
O Exacl solution

o 01 02 03 04 05 06 07 08 09 1

(d) M =200

Figure 5.1: The comparison of the exact and approximate solutions with & = 0.1 at different

M for test problem 5.1.

Table 5.4: The error and the convergence rate for « = 0.9

M N  The error Convergence rate
30 30 0.00400 —

60 60 0.00112 1.83650

100 100 4.53413%10~* 1.77023

150 150 2.28800x10~* 1.68684

200 200 1.43598%10~* 1.61925
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+ Numerical solution
O Exact solution
1r ,gm
7 gt)
af -
'3:;{’ H;GE
;-] ]
05 & ®
2] &
& &
or &
&
& ;]
@ i
'a'#ag L\BQ,
= H;—EB @"‘E
ﬂiﬁ a;('B
. gt

0 0.1 02 03 04 05 06 07 08 09

@) M = 60

+  Numerical solution
O Exact solution

] 01 02 03 04 05 06 07 08 09

(©) M = 150

Figure 5.2: The comparison of the exact and approximate solutions with & = 0.9 at different

M for test problem 5.1.

+  Numerical solution
O Exacl solution

0 0.1 02 03 04 05 06 07 08 09 1

(b) M = 100

+  MNumerical solution
O Exact solution

] 01 02 03 04 05 06 07 08 09 1

(d) M = 200
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6 Concluding remarks

In this paper, we studied an implicit discrete scheme to solve the time-fractional diffusion
equation. The error estimates and the stability of the proposed method are discussed. The
convergence rate of the proposed method was proved to be optimal. An example was pro-
vided to illustrate the capability and accuracy of the method. Constructing more efficient
algorithms is also our goal in future works.
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