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Abstract. In this work, we propose a new directed digital signature scheme over a
group ring whose security relies on the hardness of the discrete logarithm problem
and the factorization search problem. This scheme is efficient as it requires very few
operations for both signing and verifying signatures. Furthermore, the security of the
proposed scheme is examined.
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1 Introduction

Digital signatures are among the most important applications in modern cryptography and
information security as they provide data authentication and confidentiality. They were
introduced by Diffie and Hellman in 1976 [3]. In this approach [6,16], a signer uses a private
key to sign messages and their public key is used to verify the signatures. However, signed
messages, such as business transactions and medical records, may be sensitive and thus
should be protected against unauthorized access or alteration of the signature. To address
this weakness, the concept of directed digital signatures was introduced [10]. With directed
signatures, only the designated verifier can verify the signature. Furthermore, it is necessary
that both the designated verifier and signer can prove to any third party that the signature
is valid. The security of these signatures is based on the intractability of hard mathematical
problems, such as the Discrete Logarithm Problem (DLP) and Integer Factorization Problem
(IFP). Several directed signature schemes have been proposed using algebraic structures such
as linear groups, non-abelian groups, and rings [1, 2, 8, 18].

BCorresponding author. Email: sassia.makhlouf@univ-batna.dz

https://doi.org/10.58205/jiamcs.v3i1.129
http://jiamcs.centre-univ-mila.dz/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-8479-9750
https://orcid.org/0000-0002-1482-7565
https://orcid.org/0000-0001-9919-0323


16 S. Makhlouf, K. Guenda and T. A. Gulliver

In [14], the non-abelian group of matrices GLn
(
Fq

)
was used for Diffie-Hellman key

exchange. It was proven in [11] that the DLP over matrix groups can be reduced to the DLP
over F∗

q . Properties of matrices such as Cayley-Hamilton, and determinants and eigenvalues
have been used to develop attacks against schemes that use GLn

(
Fq

)
[4, 11, 12]. It was

suggested in [4,9] to employ the group of invertible matrices over the group ring GLn
(
Fq [Sr]

)
and the semi-group of matrices over the group ring Mk×k

(
Fq [Sr]

)
to avoid such attacks.

The security is based on the difficulty of the DL problem in the (semi-) group of matrices.
A cryptanalysis of protocols based on the DL problem on (semi-) groups of matrices over
group rings was given in [5]. In [8], the Factorization with Discrete Logarithm Problem
(FDLP) over the non-abelian semi-group Mk×k

(
Fq [Sr]

)
was introduced. This scheme resists

the above attacks. Using this new hard problem, we propose a new directed digital signature
scheme whose security relies on the hardness of the FDLP on a group of invertible matrices
over a group ring.

The rest of this paper is organized as follows. Section 2 gives some necessary definitions
for the proposed signature scheme. In section 3, we describe the key exchange protocol based
on FDLP proposed in [8] and then the new directed signature scheme is presented in section
4. The security of this scheme is examined in section 5. Finally, section 6 concludes the paper.

2 Preliminaries

In this section, we provide some useful definitions.

Definition 2.1 (Discrete Logarithm Problem (DLP) [11, 19]). Let G be a finite cyclic group
of order n with generator g, and y ∈ G. Then the discrete logarithm problem is to find an
integer k, 0 ⩽ k < n, such that gk = y.

Definition 2.2 (Factorization Search Problem (FSP) [13]). Given an element x ∈ G and two
subgroups A and B of G, the factorization search problem is to find a ∈ A and b ∈ B such
that ab = x.

In [8], a combination of the above two problems was used to introduce the factorization
with discrete logarithm problem.

Definition 2.3 (Factorization with Discrete Logarithm Problem (FDLP) [8]). Let G be a finite
non-commutative group of order n. Given x, y ∈ G, the factorization with discrete logarithm
problem is to find z ∈ G and t ∈ Z such that x = ytz.

If the secret parameter z is known, then the FDLP reduces to the DLP. The FDLP can also
be considered as an FSP where the two unknown factors of x are a = yt and b = z.

The complexity of the FDLP and the security of cryptosystems based on the FDLP are
discussed in [8]. The well-known determinant, eigenvalue [4], and Cayley-Hamilton [12]
attacks are not applicable to the FDLP.

Definition 2.4 (Group rings). Let G be a multiplicative group, not necessarily finite, and let
F be a field. The group ring of G over F, denoted F [G], is defined to be the set of all linear
combinations

α = ∑
g∈G

agg,

where ag ∈ F.
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We define the sum and product of two elements in F [G] by(
∑
g∈G

agg
)
+

(
∑
g∈G

bgg
)
= ∑

g∈G

(
ag + bg

)
g,

and (
∑g∈G agg

)(
∑h∈G dhh

)
= ∑g,h∈G agdh (gh)
= ∑u∈G cuu,

where
gh = u,

and
cu = ∑gh=u agdh.

For example, consider the group ring F7 [S5] with identity e and let a, b ∈ F7 [S5] such that

a = 4 (241) + 2 (24) (35) ,
b = 6 (241) + (21) (45) + 4 (2435) .

Then

a2 = 2 (142) + (12) (35) + (14) (35) + 4 (1) ,
a + b = 3 (241) + 2 (24) (35) + (21) (45) + 4 (2435) ,

ba = [4 (241) + 2 (24) (35)] [6 (241) + (21) (45) + 4 (2435)]
= 3 (142) + 5 (12) (35) + 4 (254) + 2 (12534) + 2 (14) (235) + (23) .

Consider M2×2 (F7 [S5]), the semi-group of 2 × 2 matrices over the group ring F7 [S5]
under matrix multiplication. Let A, B ∈ M2×2 (F7 [S5]) such that

A =

(
a 0
b e

)
, B =

(
a e
e b

)
.

Then

AB =

(
a2 a

ba + e 2b

)
=

 a2 4 (241) + 2 (24) (35)

ba + e 5 (241) + 2 (21) (45) + (2435)

 ,

where ba and a2 are as given above. For more details concerning group rings, refer to [15].

3 A key exchange protocol based on the FDLP

In [8], a key exchange protocol was proposed based on the FDLP using matrices over the
group ring Mk×k

(
Fq [Sr]

)
. Let G = Mk×k

(
Fq [Sr]

)
be a finite non-abelian semi-group and

H be an abelian sub-semi-group of G. Let T ∈ G, CG(T) the centralizer of T in G, and
Fm = {0, 1, . . . , m − 1} where m is a large positive integer. The groups G, H, T, and m are
publicly known. The protocol is as follows.

1. Alice chooses a random secret integer a ∈ Fm and a secret element M1 ∈ H \ CG(T).
She computes A1 = Ta M1 and sends it to Bob.
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2. Bob chooses a random secret integer b ∈ Fm and a secret element M2 ∈ H \ CG(T). He
computes A2 = Tb M2 and sends it to Alice.

3. Alice computes kA = Ta A2M1.

4. Bob computes kB = Tb A1M2.

Since M1M2 = M2M1, then

kA = Ta A2M1 = TaTb M2M1

= TbTa M1M2 = Tb A1M2 = kB.

Thus, after Step 4, Alice and Bob share the same secret key k = kA = kB.
The security of this key exchange protocol is based on the hardness of the factorization

with discrete logarithm problem over the non-commutative semi-group Mk×k
(
Fq [Sr]

)
. The

complexity and security analysis of the protocol were given in [8]. The following attacks were
considered: attacks using the properties of matrices [4, 12], attacks using the decomposition
of group rings [5], and attacks on the DLP and linear algebra. It was shown in [8] that for
small values of q and r, the complexity is high.

In this paper, this new hard problem is used to develop a new scheme that resists the
above attacks. We consider the group of invertible matrices over the group ring GL2

(
Fq [Sr]

)
.

From [4, Lemma 4.1.1], we have

|GL2
(
Fq [Sr]

)
| = q8(q − 1)8(q + 1)4(q2 + 1)(q2 + q + 1),

so then
|GL2

(
Fq [Sr]

)
| > q16.

Thus, even for small values of q and r, the security can be high as the complexity of the FDLP
over GL2

(
Fq [Sr]

)
is very high.

The main advantage of using GLn
(
Fq [Sr]

)
is that matrix multiplication is very efficient

[17] and the square and multiply algorithm can be used for exponentiation [9]. These groups
are resistant to attacks, such as determinant and eigenvalue attacks [4]. This has been verified
in [9].

4 Proposed directed signature scheme

In this section, a new directed signature scheme is proposed based on the group of invertible
matrices over a group ring and the FDLP. This scheme involves the following steps.

4.1 Initialization

Suppose that Alice (A) wants to generate a signature on a message M and send it to Bob
(B) for verification. Let G = GLn

(
Fq [Sr]

)
be the group of n × n invertible matrices over

the group ring Fq [Sr] and L an abelian subgroup of G. Let X ∈ G which has large positive
integer order m, CG(X) the centralizer of X in G, and H be a one-way hash function. The
groups G, L, X, and m and H are publicly known.
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4.2 Key generation

a. Alice chooses a secret integer t ∈ {2, 3, . . . , m − 1} and a random matrix U ∈ L \CG(X).
She computes YA = XtU and then takes (t, U) as her private key and YA = XtU as her
public key.

b. Bob chooses a secret integer s ∈ {2, 3, . . . , m − 1} and a random matrix P ∈ L \ CG(X).
He computes YB = XsP and then takes (s, P) as his private key and YB = XsP as his
public key.

4.3 Signature generation

a. The signer (Alice) randomly selects another matrix V ∈ L \ CG(X) and a secret integer
r ∈ {2, 3, . . . , m − 1}. She then computes

R = XrV,
SA = XrYBVk−1,

where k denotes the shared secret key.

b. Using the one-way hash function H and message M, Alice computes

WA = H (SA, M) ,

and sends {WA, R, M} to Bob as her signature for M.

4.4 Signature verification

Once the signature {WA, R, M} is received from Alice, Bob computes

T = RY−1
A ,

SB = XsTX−s,
WB = H (SB, M) .

Bob accepts the signature if and only if

WA = WB.

Otherwise, the signature is rejected.

4.5 Proof of validity to a third party (C)

In the proposed scheme, a third party (C) can verify the signature with the help of the
designated verifier or signer. We describe below the protocol by which the designated verifier
or signer can prove the validity of the signature.

4.5.1 Proof of validity by (A) to (C)

a. Alice selects a random secret matrix D ∈ L \CG(X) and a secret integer d ∈ {2, 3, . . . , m−
1}, and computes σ = XdD.

b. Alice computes λ = XdYCDSA and sends (σ, λ) to (C) whose public key is YC = XzQ.
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c. (C) receives (σ, λ) and using their public key computes SC = (XzσQ)−1 λ. Then, (C)
checks WA = H(SC, M), and if it holds accepts the validity of the signature.

The proof of Step c follows from

(XzσQ)−1 λ =
(

XzXdDQ
)−1

XdYCDSA

=
(

Xz+dDQ
)−1

XdYCDSA

=
(

XdYCD
)−1

XdYCDSA = SA.

4.5.2 Proof of validity by (B) to (C)

a. Bob selects a random secret matrix E ∈ L \CG(X) and a secret integer g ∈ {2, 3, . . . , m−
1}, and computes γ = XgE.

b. Bob computes δ = XgYCESB and sends (γ, δ) to (C).

c. (C) receives (γ, δ), and using their public key computes SC = (XzγQ)−1 δ. Then, (C)
checks WA = H(SC, M), and if it holds accepts the validity of the signature.

The proof of Step c follows from

(XzγQ)−1 δ = (XzXgEQ)−1 XgYCESB

=
(
Xz+gEQ

)−1 XgYCESB

= (XgYCE)−1 XgYCESB = SB.

5 Example

5.1 Initialization

Consider GL2(F5 [S3]) and L =

{(
1 a
0 1

)
, a ∈ F5 [S3]

}
, and let X =

(
3α2 0
0 1

)
where S3 =〈

α, β | α3 = 1, β2 = 1
〉
, and m = 12.

5.2 Key generation

Alice randomly chooses t = 2 and U =

(
1 β
0 1

)
, and calculates

YA = X2U =

(
4α 0
0 1

)(
1 β
0 1

)
=

(
4α 4αβ
0 1

)
.

Then
(

2,
(

1 β
0 1

))
is her private key and YA =

(
4α 4αβ
0 1

)
is her public key.

Similarly, Bob randomly chooses s = 3 and P =

(
1 α
0 1

)
, and calculates

YB = X3P =

(
2 0
0 1

)(
1 α
0 1

)
=

(
2 2α
0 1

)
.
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Then
(

3,
(

1 α
0 1

))
is his private key and YB =

(
2 2α
0 1

)
is his public key.

The shared secret key is

kA = X2YBU =

(
4α 0
0 1

)(
2 2α
0 1

)(
1 β
0 1

)
=

(
3α 3αβ + 3α2

0 1

)
,

and

kB = X3YAP =

(
2 0
0 1

)(
4α 4αβ
0 1

)(
1 α
0 1

)
=

(
3α 3α2 + 3αβ
0 1

)
,

as k = kA = kB.

5.3 Signature generation

Alice also randomly chooses r = 5 and V =

(
1 αβ
0 1

)
, and computes

R = X5V

=

(
3α 0
0 1

)(
1 αβ
0 1

)
=

(
3α 3α2β
0 1

)
,

and
SA = XrYBVk−1

=

(
3α 0
0 1

)(
2 2α
0 1

)(
1 αβ
0 1

)(
2α2 4α + 4β
0 1

)
=

(
2 4αβ + α2β
0 1

)
,

where k−1 =

(
2α2 4α + 4β
0 1

)
.

Let the hash function be

H
((

a11 a12
a21 a22

)
,
(

b11 b12
b21 b22

))
=

(
∑ a1i ∑ b1i

∑ a2i ∑ b2i

)
,

and let M =

(
α β
0 1

)
be the message. Then Alice computes

WA = H (SA, M)

= H
((

2 4αβ + α2β
0 1

)
,
(

α β
0 1

))
=

(
2 + 4αβ + α2β α + β

1 1

)
,

and sends {WA, R, M}, i.e.{(
2 + 4αβ + α2β α + β

1 1

)
,
(

3α 3α2β
0 1

)
,
(

α β
0 1

)}
,

as her signature on the message M.
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5.4 Signature verification

For verification, Bob computes

T = R Y−1
A

=

(
3α 3α2β
0 1

)(
4α2 4β
0 1

)
=

(
2 2αβ + 3α2β
0 1

)
,

and
SB = Xs T X−s

=

(
2 0
0 1

)(
2 2αβ + 3α2β
0 1

)(
3 0
0 1

)
=

(
2 4αβ + α2β
0 1

)
,

where X−1 =

(
2α 0
0 1

)
and

WB = H (SB, M)

= H
((

2 4αβ + α2β
0 1

)
,
(

α β
0 1

))
=

(
2 + 4αβ + α2β α + β

1 1

)
.

Bob accepts the signature as
WA = WB.

5.5 Proof of validity by (A) to (C)

Alice randomly chooses d = 6 and D =

(
1 2β
0 1

)
, and calculates

σ = X6D =

(
4 0
0 1

)(
1 2β
0 1

)
=

(
4 3β
0 1

)
.

(C) randomly chooses z = 7 and Q =

(
1 3α
0 1

)
, and calculates

YC = X7Q =

(
2α2 0
0 1

)(
1 3α
0 1

)
=

(
2α2 1
0 1

)
.

Alice computes

λ = Xd YC D SA

=

(
4 0
0 1

)(
2α2 1
0 1

)(
1 2β
0 1

)(
2 4αβ + α2β
0 1

)
=

(
α2 2β + 3αβ + α2β + 4
0 1

)
,

and sends (σ, λ) to (C).
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(C) receives (σ, λ) and computes

SC = (Xz σ Q)−1 λ

=

(
2α 2α + 3β
0 1

)(
α2 2β + 3αβ + α2β + 4
0 1

)
=

(
2 4αβ + α2β
0 1

)
,

where XzσQ =

(
3α2 4 + α2β
0 1

)
. The validity of the signature is checked by computing

WA = H (SC, M)

= H
((

2 4αβ + α2β
0 1

)
,
(

α β
0 1

))
=

(
2 + 4αβ + α2β α + β

1 1

)
.

As this is true, (C) accepts the validity of the signature.

5.6 Proof of validity by (B) to (C)

Bob randomly chooses g = 8 and E =

(
1 2α
0 1

)
, and calculates

γ = X8E =

(
α 0
0 1

)(
1 2α
0 1

)
=

(
α 2α2

0 1

)
,

and
δ = Xg YC E SB

=

(
α 0
0 1

)(
2α2 1
0 1

)(
1 2α
0 1

)(
2 4αβ + α2β
0 1

)
=

(
4 3αβ + 2α2β
0 1

)
.

Then, Bob sends (γ, δ) to (C).
(C) receives (γ, δ) and computes

SC = (Xz γ Q)−1 δ

=

(
3 0
0 1

)(
4 3αβ + 2α2β
0 1

)
=

(
2 4αβ + α2β
0 1

)
,

where XzγQ =

(
2 0
0 1

)
. The validity of the signature is checked by computing

WA = H (SC, M)

= H
((

2 4αβ + α2β
0 1

)
,
(

α β
0 1

))
=

(
2 + 4αβ + α2β α + β

1 1

)
.

As this is true, (C) accepts the validity of the signature.
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6 Confirmation and security

6.1 Completeness

Theorem 6.1. The verification protocol is complete if the verifier can always verify the equality WA =
WB.

Proof. Let {WA, R, M} be a valid signature generated by Alice. If she has followed the signa-
ture verification algorithm, then Bob will always accept {WA, R, M} as a valid signature. In
verification, the parameters are R, M, and SB.

Bob computes
T = RY−1

A
= XrVU−1X−t,

and
SB = XsTX−s

= XsXrVU−1X−tX−s

= Xs+rVU−1X−s−t.

Since U, V, and P are commutative

SB = Xs+rVU−1PP−1X−s−t

= Xs+rPVU−1P−1X−s−t

= XrXsPVU−1P−1X−sX−t

= XrYBVk−1

= SA,

so SA = SB. Then, Bob computes H (SB, M), which is always equal to WA and thus accepts
{WA, R, M} as valid signature. Thus, if {WA, R, M} is a valid signature generated by Alice,
and Alice and Bob have followed the protocol, then Bob can always authenticate the message
M.

Theorem 6.2. The proposed signature scheme is a directed signature scheme.

Proof. To verify the signature {WA, R, M} requires

SB = Xs T X−s.

Thus, verification requires the private key s of the verifier, so only Bob can verify the signa-
ture.

6.2 Security analysis

In this subsection, we study the security of the proposed signature scheme. This security is
based on the FDLP which is computationally hard. Assume that an adversary (E) can obtain,
remove, forge, and retransmit any message sent by Alice to Bob. Any forged data is denoted
by dF. We consider the security against four well-known attacks.

6.2.1 Total break

This is as difficult as solving the FDLP on a non-commutative group of invertible matrices
over a group ring. For example, using Alice’s public key YA = XtU, obtaining the private
key (t, U) is intractable as the FDLP on a non-commutative group is very hard [8].
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6.2.2 Data forging

Suppose that (E) replaces the original message M with a forged message MF. Then Bob
receives the signature {WA, R, MF} and computes

WB = H
(

SB, MF
)

.

However, verification fails because

H (SA, M) ̸= H
(

SB, MF
)

,

and WA = WB is true only for the original message with high probability.
Another approach is to obtain MF for a valid SA. This is intractable because it is assumed

that the hash function H is cryptographically secure, so finding SA is very hard based on the
FDLP. Thus, MF cannot be signed to obtain a valid signature.

6.2.3 Signature repudiation

In the proposed scheme, Alice is the only one with the private key (t, U), thus she can-
not deny having signed her signature. Assume that Alice intends to refute that she has
signed a message M. Then it follows that the valid signature {WA, R, M} can be changed to
{WF

A, RF, M}. The designated verifier Bob computes

TF = RF Y−1
A ,

and
SF

B = Xs TF X−s.

He then checks the validity of the signature using

WB = H
(

SF
B, M

)
̸= WF

A,

this computation requires parameters based on the FDLP problem, so it is intractable for
someone to find the private key (t, U). Thus, this signature scheme ensures the non-repudiation
property.

6.2.4 Existential forgery

Existential forgery is defined in [7]. An attacker may try to impersonate the designated signer
Bob by randomly selecting a matrix V1 ∈ L \CG(X) and an integer r1 ∈ {2, 3, . . . , m − 1}, and
then calculating

R = Xr1V1.

However, without knowing the secret key k, it is difficult to generate valid

SA = Xr1YB V1 k−1,

and
WA = H (SA, M) ,

for a message M such that the verification equation

WA = WB,

is satisfied. Thus, it is intractable to construct a valid signature without knowing the private
key, so (E) is not able to calculate forged signatures.
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7 Conclusion

In this paper, a new directed signature scheme based on FDLP was proposed using the group
of invertible matrices over the group ring Fq [Sr] under the usual matrix multiplication. The
security of the proposed scheme is based on the intractability of the FDLP. It was shown that
this signature scheme is secure against data forgery, signature repudiation, and existential
forgery. It is also secure against total break as the private and public keys are based on the
FDLP.
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