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Abstract. Task scheduling in distributed computing architectures has attracted consid-
erable research interest, leading to the development of numerous algorithms aiming to
approach optimal solutions. However, most of these algorithms remain confined to sim-
ulation environments and are rarely applied in real-world settings. In a previous study,
we introduced the MFHS framework, which facilitates the transition of scheduling algo-
rithms from simulation to practical deployment. Unfortunately, MFHS currently offers
a limited selection of scheduling heuristics. In this work, we address this limitation
by presenting the MFHS_jMetal framework, integrating the extensive task scheduling
algorithms available in the well-established jMetal framework. Our implementation
demonstrates the successful expansion of available scheduling algorithms while pre-
serving the core characteristics of MFHS bridging the gap between theoretical models
and real-world deployment.

Keywords: Distributed computing, Scheduling, MFHS, jMetal).

1 Introduction

In general, the task scheduling problem in heterogeneous distributed environments is rec-
ognized as an NP-Hard problem [6], meaning that, to date, no solution has been found to
efficiently determine the optimal mapping of a set of tasks to a set of resources in polynomial
time as the problem size increases. This challenge has spurred significant efforts within the
scientific community to develop algorithms that can provide solutions closely approximating
the optimal solution within a reasonable timeframe. Consequently, a substantial number of
heuristics have been proposed in the existing literature.

Most of the proposed scheduling heuristics are evaluated through simulation, employ-
ing specific evaluation tools. Among the available tools for simulation-based evaluation, we
mention jMetal [5] [13], which we utilized in this study. jMetal has been steadily gaining pop-
ularity in the field of multi-objective optimization as an open-source framework. This rise in
popularity can be attributed to its extensive library of pre-implemented heuristics, including
powerful algorithms such as NSGA-II [4], PAES [11], and SPEA2 [19].
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One of the major issues with jMetal, as well as many other simulators, is the absence of
a mechanism for seamlessly transitioning evaluated algorithms from simulation to real-world
deployment. Our ’MFHS’ framework, previously introduced in our work [9], addresses this
challenge by enabling automatic switching from simulation to practical deployment. However,
a significant limitation of MFHS is its insufficient number of implemented algorithms, which
can be remedied by proposing a solution that facilitates interaction with jMetal, a framework
renowned for its extensive collection of task scheduling algorithms.

To overcome the limitations of both the jMetal and MFHS frameworks, this paper intro-
duces a solution named MFHS_jMetal, which fosters collaboration between these two tools,
complementing each other’s functionalities. Our proposed integration is built upon an added
layer within MFHS, facilitating interaction with jMetal, particularly in cases where the re-
quired scheduling heuristics are unavailable in MFHS. Consequently, MFHS_jMetal empow-
ers a wide array of task scheduling algorithms (previously untested in real-world scenarios)
to be automatically deployed in practical environments. This approach enhances our under-
standing of algorithm behavior when employed in real-world applications.

The remainder of this paper is structured as follows: Section 2 provides an overview of re-
lated work, while Section 3 offers a concise introduction to the jMetal and MFHS frameworks.
Section 4 delves into the specifics of the proposed MFHS_jMetal framework. Subsequently,
Section 5 presents experimental findings through a case study. Finally, Section 6 concludes
the article and outlines potential avenues for future enhancements.

2 Related work

In the literature, many efforts have been made to propose solutions that assist both researchers
and developers in simulating and deploying scheduling algorithms, thereby facilitating the
study of algorithm behavior and enabling comparisons with existing heuristics.

In the remainder of this section, we present some simulators and frameworks. Simulators
allow the deployment and evaluation of scheduling algorithms in simulated distributed com-
puting environments, while frameworks enable the deployment of scheduling algorithms in
real-world distributed architectures.

SimGrid [3] is a versatile simulator that provides essential functionality for simulating dis-
tributed applications in heterogeneous environments, offering a suitable platform for heuristic
evaluation, prototyping, and the development and enhancement of grid applications. It can
be employed for various large-scale systems, including Grids, P2P systems, and Cloud envi-
ronments.

GSSIM [1] and DCWorm citekurowski2013dcworms are two simulators developed to sup-
port experimental studies of resource allocation and scheduling policies in distributed sys-
tems. DCWorm extends GSSIM by incorporating additional features focused on energy con-
sumption and efficiency studies.

CloudSim [7] is a widely recognized tool for modeling and simulating cloud computing
environments. It enables users to define key characteristics of data centers, including the
number and specifications of hosts, available storage, network topology, and usage patterns.
Many other simulators, such as ElasticSim, CloudAnalyst, and Dynamiccloudsim, have been
built upon CloudSim as foundational pillars.

iFogSim [8] is a toolkit designed for modeling and simulating resource management tech-
niques in IoT, Edge, and Fog computing environments. Building upon the event simulation
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functionalities of CloudSim, MyiFogSim extends iFogSim to include virtual machine migra-
tion simulation.

Núñez et al. have proposed a flexible simulator called iCanCloud [15], is is based on
SIMCAN [14], and it is a flexible simulator designed for modeling HPC architectures. Both
SIMCAN and iCanCloud are open-source simulators developed in C++. They support parallel
experiments and the addition of various adapted MPI libraries and POSIX-based APIs for
simulating new applications.

OpenStack Neat [2] is an open-source framework built upon the OpenStack platform. It
focuses on dynamic VM consolidation scheduling in cloud data centers. This framework
functions as a transparent add-on to OpenStack, allowing for use without modification of the
original installation or specific configurations.

CLOUDRB [16], proposed by Somasundaram and Govindarajan, serves as a cloud resource
broker for scheduling and managing High-Performance Computing (HPC) applications in
Science Cloud. It integrates a deadline-based job scheduling policy with a particle swarm
optimization-based resource scheduling mechanism, aiming to minimize both cost and exe-
cution time to meet user-specified deadlines.

CometCloud [10] is a cloud framework designed for autonomic workflow management,
addressing changing computational and Quality of Service (QoS) requirements. It aims to cre-
ate a virtual computational cloud infrastructure that seamlessly integrates local computational
environments and public cloud services on-demand, providing abstractions and mechanisms
supporting various programming paradigms and real-world applications.

A general cross-layer Cloud scheduling framework for IoT tasks [18] dynamically se-
lects appropriate algorithms based on specific task criteria. Numerous experiments using
the CloudSim simulator have been conducted to evaluate this framework.

Maxinet [17] offers distributed emulation of software-defined networks. Additionally,
EmuFog [12] is an emulator for Fog Computing environments built atop MaxiNet. Emu-
Fog supports the emulation of real applications and is designed to accommodate large-scale,
scalable typologies. It is an open-source tool that encourages extensibility, allowing developers
to override components as needed to adapt to their requirements."

3 Background

As the primary objective of the framework presented in this paper is to facilitate collaboration
between the MFHS and jMetal frameworks, it is essential to provide a more in-depth expla-
nation of the functioning of both these frameworks. This will enhance comprehension of the
subsequent sections of the paper.

A. jMetal

jMetal is a Java-based framework developed from scratch, oriented towards addressing multi-
objective optimization problems using heuristics. It is designed for use in various disciplines,
including task scheduling problems, which are the focus of the present work. jMetal is built
to be portable, extensible, flexible, and easily reusable.

jMetal has evolved into a Maven project *. In our work, we have concentrated on version
5.0 of jMetal, which is organized into four distinct packages readily available on the Maven

*Maven Project, https://maven.apache.org/
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Central Repository **:
jmetal-core: This package encompasses classes and interfaces related to the core architec-

ture, along with various utilities, including quality indicators.
jmetal-algorithm: Provides implementations of widely recognized meta-heuristics, in-

cluding NSGA II, NSGA III, SPEA2, ESPEA, and more.
jmetal-problem: Encompasses implementations of well-established problems, both single-

objective and multi-objective benchmarks.
jmetal-exec: Contains executable programs that facilitate the configuration and execution

of algorithms.

A. MFHS

MFHS offers an appealing feature termed "From Theoretical to Real Deployment." This fea-
ture allows for the analysis of scheduling algorithms using theoretical data for simulation
purposes, followed by an automatic transition from simulation to actual deployment. Addi-
tionally, MFHS is designed for seamless adaptability to various distributed architectures and
facilitates easy interaction with external solutions.

Regrettably, as of the present, MFHS has a limited number of scheduling heuristics avail-
able. To address this limitation, we have integrated an external solution, jMetal, which already
includes a substantial number of task scheduling algorithms.

MFHS functions are realized through six modules:
Resources Discovery: This module discovers available resources along with their charac-

teristics, including estimated upload/download speeds, CPU specifications, and more.
Requests Collector: Responsible for gathering data related to task execution requests,

such as data size for upload/download, CPU utilization duration, and the number of required
logical CPUs.

Scheduling: This module integrates information collected by the Resources Discovery and
Requests Collector modules. It then utilizes scheduling algorithms to determine resource-task
mappings.

Resources Allocation: Performs actual resource allocation based on the assignment matrix
obtained from the Scheduling module.

Monitoring: This module provides control over the platform during the execution of the
task scheduling process. It can identify anomalies, such as loss of connection to a compute
node, and archives various monitoring data for future uses.

Behavior Study: Invoked at the conclusion of the scheduling process, this module collects
information from all other modules and generates comprehensive reports.

4 Proposed MFHS_jMetal framework

jMetal already contains a significant number of task scheduling algorithms that are primar-
ily suitable for simulation but lack a mechanism for transitioning to real deployment in a
distributed environment. Fortunately, MFHS offers an intriguing feature, enabling this transi-
tion from theoretical to real deployment. However, MFHS currently has a limited number of
scheduling algorithms available.

In this work, we aim to leverage the strengths of MFHS and the jMetal framework while
mitigating their respective limitations.

**Maven Central Repository, http://search.maven.org
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To achieve our objectives, our proposed solution enables the invocation of jMetal from
within MFHS, allowing the execution of any task scheduling algorithm that is unavailable in
MFHS. This process involves two steps: First, MFHS provides data related to both task and
resource characteristics. Second, jMetal returns the mapping of the task set to the resource
set based on the selected algorithm. Finally, MFHS continues with the remaining steps, as
previously described in Subsection 3.A.

4.1 High level Architecture

Figure 4.1 illustrates the global architecture of our proposed MFHS_jMetal. It reveals the ad-
dition of an extra layer atop the Scheduler module of MFHS. This layer serves as a seamless
interface, housing a function named externScheduling. This function is triggered when the
required scheduling algorithm is unavailable in MFHS. externScheduling facilitates interaction
with an external framework containing the necessary scheduling algorithms, with jMetal serv-
ing as the external framework in this paper. However, it’s worth noting that this function can
be adapted to call a framework other than jMetal if needed.

jMetal is an open-source project that allows the incorporation of additional functions. In
our case, we have introduced a function capable of receiving input data, including informa-
tion about the task set, resource set, and estimated task execution times on each resource,
among other details. After executing a task scheduling algorithm using the provided data,
the resulting mapping is made accessible through the added function as output. This output
is subsequently collected and utilized by the remaining processes within MFHS.

Figure 4.1: MFHS_jMetal Global Architecture
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4.2 Call prosseus

Algorithm 1 represents the portion we have added, which is injected after the Resource Dis-
covery and Request Collector modules, and before the execution of the desired scheduling algo-
rithm. This injected algorithm allows for the execution of the corresponding task scheduling
algorithm if it is available within MFHS. If the algorithm is not available, it calls jMetal while
sending the necessary data as input. Once the algorithm is executed, the results are collected,
corresponding to the possible mappings found. These collected results are saved into two
distinct files, namely Solutions.tsv and Objectives.tsv.

Solutions.tsv contains all dominant solutions, with each line having a corresponding line
in Objectives.tsv, which contains the values of the objectives to be optimized. Subsequently,
MFHS continues its execution based on these two files, which provide sufficient data for the
rest of the MFHS process.

Algorithm 1 requires as input the meta-task that includes the set of tasks to be executed
and the estimated execution time for each task on each resource. In the algorithm, N and M
represent the total number of tasks and the total number of resources, respectively. Addition-
ally, Root_O1 through Root_Op represent a set of p matrices, each with a size of n ∗ m. Here,
p denotes the number of matrices needed for calculating the values of the objectives to be
optimized. Root_Ol [i][j] represents the estimated value of the lth matrix for task i if executed
on resource j.

In the current version of MFHS, following MFHS_jMetal, a maximum of four objectives can
be considered. These objectives are: makespan, Resource utilization, Cost, and Energy consumed.

Algo represents the name of the algorithm to be executed. Depending on the chosen
Algo, additional information may be required as input. A detailed description of the required
Otherdata will be presented in Section 5.

Input : Root_O1[n][m],Root_O2[n][m] Root_Op[n][m], Algo, Otherdata
Output: maping, objective values
if (Algo in MFHS) then

Call algo from MFHS;
else

if (Algo in jMetal) then
call Algo from jMetal

else
exit(0)

end
end
Return A f f ectation

Algorithm 1: MFHS_jMetal Global processes

4.3 MFHS_jMetal objectives measurement and representation

Thanks to MFHS and its modularity property, which enables us to easily reuse one or more
modules, we have added an additional function atop the Scheduling module without making
any modifications to other modules.

Assuming we have two algorithms to evaluate before their deployment, Algorithm1MFHS
and Algorithm2jMetal. The first one is available within the MFHS framework, while the
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second one is available in the jMetal framework. Both jMetal and MFHS require input data,
and the nature of the required data may vary depending on the algorithm.

Each algorithm is represented by a corresponding Java class. Consequently, the construc-
tors for Algorithm1MFHS and Algorithm2jMetal are Algorithm2MFHS (ET[n][m], Cost[n][m],
Energy[n][m], Array(input variable)) and Algorithm2jMetal (ET[n][m], Cost[n][m], Energy[n][m],
Array(input variable)). Here, ET[n][m], Cost[n][m], and Energy[n][m] respectively represent the
estimated execution time, cost, and energy consumption of each task on each resource. These
values change based on the task requirements and resource capacities, independent of the
chosen algorithm. Input variable encompasses other variables dependent on the algorithm in
use, such as selection probability and mutation probability in the case of the GA algorithm.

We assume that f Energy, f Makespan, and f Cost are the objective functions to be opti-
mized, corresponding to Energy consumed, Total execution time, and Cost, respectively.

f Energy = ∑n−1
i=0 Energy[R[Ti]]

f Cost = ∑n−1
i=0 Cost[R[Ti]]

f Makespan = maxi∈[0...n−1](ResTime[Ti])

We are interested in the non-dominated solutions. The concept of dominated solutions
is defined as follows: Each solution s is represented by a tuple (Energy(s), Cost(s), and
Makespan(s)). Solution s1 dominates s2 if Energy(s1) ≤ Energy(s2), Cost(s1) ≤ Cost(s2),
and Makespan(s1) ≤ Makespan(s2).

The set of non-dominated solutions is saved in a file called objectives.tsv. Each line is
written in the following format: Key_s : Energy(s), Cost(s), Makespan(s). Therefore, each line
in objectives.tsv is associated with a line in another file called solutions.tsv, identified by key_s.
Each line in solutions.tsv is written as a sequence of n values in the following format: Key_s :
R[T0] R[T1] ... R[Ti] .. .R[Tn], where R[Ti] represents the resource on which Ti is executed. Key_s
is a key associated with each solution.

With the information in solutions.tsv and objectives.tsv, we can generate various representa-
tions to help understand the results and select the most suitable solution for real implemen-
tation. The selection of the best solution can be done manually or using a specific program.

Upon completion of the execution of all algorithms and obtaining the solutions.tsv and
objectives.tsv files, the remaining steps of the MFHS process in a real environment can be
continued, including resource allocation, monitoring, and behavior studies.

5 Exprementation

To demonstrate the successful integration we have proposed, we began by implementing the
layer discussed in Section 4 using JAVA, R, and bash programming languages. Subsequently,
we conducted our experimentation using two algorithms: the first one called NSGA II, avail-
able exclusively in jMetal, and the second one named InterRC, available in MFHS. It is impor-
tant to note that the objective of our presented experimentation is not to compare these two
algorithms but rather to showcase the effective functioning of the proposed MFHS and jMetal
integration.

To initiate the evaluation of InterRC and NSGA II, the file StartCases.sh needs to be filled
with the two following lines as specified in Table 5.1:

./MultiCaseNSGAII.sh 0.05 0.8 250 100 solutions1.tsv objectives1.tsv 512 16

./InterRC.sh 10 500 solutions2.tsv objectives2.tsv 512 16 250 100
A section of code implemented in bash was added, named CallAlgojMetal.sh, which enables

MFHS to interact with jMetal by facilitating the exchange of necessary data.
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NSGA II Algorithm
Parameter Value

Problem size 512 Task on 16 Resources
Crossover probability 0.80
Mutation probability 0.05

Population size 250
Number of generation size 100

InterRC Algorithm
Parameter Value

Problem size 512 Task on 16 Resources
Population size 250

Number of generation size 100

Table 5.1: NSGA II and InterRC input parameters

Figure 5.1 and Figure 5.2 respectively depict extracts from objectives1.tsv and objectives2.tsv.
The latter file contains the objective values to be optimized, corresponding to the Pareto front
values.

Each line in objectives1.tsv and objectives2.tsv corresponds to a line in solution1.tsv and
solution2.tsv, respectively. These solution files contain the assignments that produce the ob-
tained values of the objectives to be optimized.

Figure 5.1: NSGA II Pareto front

Figure 5.2: InterRC Pareto front

In our experimentation, we evaluated the two algorithms based on three objectives: En-
ergy consumption, Cost, and Total response time. Consequently, MFHS executed CallAl-
gojMetal.sh with the following inputs: ET[n][m], Cost[n][m], Energy[n][m], and the array
representing, in our case, the number of generations, probability of crossover, and probability
of mutation.
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6 Conclusion and Future workă

In this paper, we have introduced the MFHS_jMetal framework, which involves the integra-
tion of a layer on top of the Scheduling module of the MFHS framework. This layer enables
interaction with the jMetal framework.

Our proposed solution offers the advantages of both MFHS and jMetal while mitigating
their respective disadvantages. The integration expands the pool of task scheduling algo-
rithms available to users on one hand and incorporates the "From theoretical to real deploy-
ment" feature into jMetal without making extensive changes to MFHS.

Experiments demonstrate the successful implementation of the discussed functions and
the achievement of the integration’s objectives.

In this work, our experiments focused solely on the scheduling module of MFHS as the
primary objective was to validate our proposed idea. Future work may involve the deploy-
ment of our solution in a real distributed environment, such as Cloud computing, for more
extensive experiments.

Additionally, we have initiated the call from MFHS to jMetal in this paper. Future work
may consider the reverse operation, calling MFHS from jMetal. This would be particularly
valuable for researchers interested in working with real data collected from real environments.
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