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Abstract. This paper investigates the behavior of a four-dimensional memristor-based
Chua circuit. Specifically, we emphasize its chaotic and hyperchaotic behavior using
the phase portrait and the Lyapunov spectrum. As chaos is deemed undesirable in nu-
merous scientific disciplines, particularly in fields like robotics and electronic sciences,
where the analyzed circuit holds potential applications in electronic device construc-
tion, we aim to alleviate such behaviors. To achieve this, we put forth an adaptive
control strategy involving unknown parameters. The effectiveness of the suggested
adaptive chaos control is established using the Lyapunov stability theory. To further
illustrate and confirm our findings, we present numerical simulations, providing a vi-
sual representation of the successful application of the proposed adaptive control in
managing the circuit’s dynamics.
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1 Introduction

In 1971, Leon Chua posited the theoretical existence of the memristor as the fourth circuit el-
ement alongside the commonly recognized resistor, capacitor, and inductor [8]. Subsequently,
in 2008, researchers from Hewlett-Packard (HP) laboratories reported the successful fabrica-
tion of a physical memristor implementation [18]. This prototype utilizes TiO2 thin films with
doped and un-doped regions situated between two metal contacts at the nanometer scale. The
memristor implementation developed by HP researchers has garnered considerable attention.

A memristor is a passive nonlinear circuit element with two-terminal that connects charge
(q) and flux (φ), typically described by its constitutive relation of nonlinear form: f (φ, q) = 0.
When this nonlinear relationship can be transformed to a single-valued function φ(q) of the
charge q; the memristor is referred to as charge-controlled.
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The memristor is defined by a memristance function of the form M(q) =
dφ(q)

dq
.

A memristor is considered flux-controlled when the equation f (φ, q) = 0 can be expressed
as a single-valued function q = q(φ). In this scenario, the memristor is defined by its mem-

ductance function M(φ) =
dq(φ)

dφ
, representing the rate of change of charge with respect to

flux [10]. Various memristor-based models have been recently proposed [3–7, 15–17].

Huang et al. [9] have substituted Chua’s diode in Chua’s circuit with a negative conduc-
tance and a flux-controlled memristor characterized by q(φ) = −aφ + 0.5bφ|φ| in parallel.
This substitution allows for the creation of a new Chua’s circuit based on memristors. Uti-
lizing Kirchhoff Laws, the dynamics of the modified memristor-based Chua’s circuit can be
described by the following set of differential equations



dV1(t)
dt

=
1

C1

[
V2(t)− V1(t)

R
+ GV1(t)− (−a + b|ϕ|)V1(t)

]
,

dV2(t)
dt

=
1

C2

[
V1(t)− V2(t)

R
+ IL(t)

]
,

dIL(t)
dt

=
1
L
[−V2(t)− RL IL(t)] ,

dϕ(t)
dt

= V1(t),

(1.1)

where Vi, i = 1.2 voltages, Ci, i = 1.2 capacitances, IL current, R, RL and G resistances, L is
inductance and ϕ is the magnetic flux through the memristor. Set x = V1, y = V2, z = IL, ω =

ϕ, C2 = 1, R = 1, α =
1

C1
, β =

1
L

, γ =
RL

L
and ξ = G then (1.1) can be transformed into the

dimensionless form system (2.1).

In the field of control theory, adaptive control stands out as a widely employed technique
for stabilizing systems in situations where the system parameters are not known [19–21]. On
the other hand, sliding mode control methods [2, 14, 22, 23], as well as active control methods,
are applied when the parameters are accessible and measurable [1, 11, 12, 24–26]

In this study, we counteract the unwanted chaotic and hyperchaotic tendencies, aiming to
stabilize the system (2.1) at its equilibrium points. This is achieved through the development
of an adaptive control system founded on the principles of Lyapunov stability theory.

The rest of paper is organized as follows: Section 2 provides an exploration of the dynam-
ics and characteristics of the memristor-based Chua’s system. In Section 3, we elaborate on
the adaptive control method for regulating the output of the memristor-based Chua’s system.
Section 4 presents detailed numerical simulations that confirm and illustrate the findings of
this paper. Finally, Section 5 offers concluding remarks.
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2 Memristor-based four-dimensional Chua’s Circuit

A memristor-based Chua’s hyperchaotic circuit has been introduced in [9] and mathematically
modeled by the following four dimensional differential system

dx(t)
dt

= α[y(t)− x(t) + ξx(t)− (−a + b|ω|)x(t)],

dy(t)
dt

= x(t)− y(t) + z(t),

dz(t)
dt

= −βy(t)− γz(t),

dω (t)
dt

= x(t),

(2.1)

where x, y, z and ω are the states and α, β, γ, ξ, a and b assumed to be positive constant
parameters.

2.1 Dissipativity and existence of an attractor

The system (2.1) can be written in its vector form as

dX
dt

= f (X) =


f1(x, y, z, ω)

f2(x, y, z, ω)

f3(x, y, z, ω)

f4(x, y, z, ω)

 , (2.2)

where X(t) = (x(t), y(t), z(t), ω(t)) and
f1(x, y, z, ω) = α [y(t)− x(t) + ξx(t)− (−a + b|ω(t)|)x(t)] ,

f2(x, y, z, ω) = x(t)− y(t) + z(t),

f3(x, y, z, ω) = −βy(t)− γz(t),

f4(x, y, z, ω) = x(t).

(2.3)

We have

div f =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
+

∂ f4

∂ω
= α(−1 + ξ + a − b|ω|)− 1 − γ. (2.4)

For |ω| > ξ + a − 1
b

− γ + 1
αb

, we have div f < 0 then, the system (2.1) is dissipative and exhibits
an attractor.

2.2 Equilibrium points

The equilibrium points of the memristor-based Chua’s system (2.1) are obtained by solving
the following system of equations

α[y(t)− x(t) + ξx(t)− (−a + b|ω(t)|)x(t)] = 0,

x(t)− y(t) + z(t) = 0,

−βy(t)− γz(t) = 0,

x(t) = 0.

(2.5)
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The resolution of (2.5) gives the set of equilibrium points

Pe = {(x, y, z, ω); x = 0, y = 0, z = 0 and ω = ωe ∈ R} . (2.6)

Thus, each point of the ω-axis is an equilibrium point of the system (2.1).
The stability of (2.1) at the equilibrium points was studied by Huang and Wang [9].

3 Chaos and hyper-chaos in the memristor-based Chua circuit

We shall investigate the dynamic of system (2.1) versus the parameter α ∈ [0, 9.2], using phase
portraits, bifurcation diagrams and Lyapunov exponents. The other parameters as set to:

β = 10, γ = 0.11, ξ = 0.1, a = 1.5 and b = 1, (3.1)

with the initial conditions

x(0) = 0, y(0) = 0, z(0) = 0.0001 and ω(0) = −0.98. (3.2)

The Lyapunov exponents are numerically calculated using the Wolf-Swift algorithm [?].
For α = 9.15 one gets

L1 = 0.2976, L2 = 0.0230, L3 = −0.0200, L4 = −6.259. (3.3)

Since L1 + L2 + L3 + L4 = −5.9582 < 0, L1 > 0, L2 > 0, then the system (2.1) is dissipative
and hyperchaotic.

The Kaplan-Yorke dimension of the system (2.1) is obtained as

DKY = 3 +
L1 + L2 + L3

|L4|
(3.4)

= 3 +
0.2976 + 0.0230 − 0.0200

6.259
= 3.0480,

which is a fractal dimension.
The evolution of the two largest Lyapunov exponents together with the bifurcation dia-

gram of x versus α ∈ [0, 9.2] are depicted in Figure 3.1, which shows good agreement between
them.

From Figure 3.1, one observes that for α ∈ (0, 6.15) there is a stationary behavior as illus-
trated in Figure 3.2a for α = 5, and a Hopf bifurcation occurs at α = 6.15 where the equilib-
rium point losses its stability in view of a period-one limit cycle (see Figure 3.2b), which in
tour bifurcates to a period-two limit cycle at α = 6.77 (see Figure 3.2c) and the period dou-
bling scenario becomes very fast at α = 6.89 leading to chaotic behavior for a small widows
α ∈ (6.9, 7.01) (see Figure 3.2d), and the stationary behavior return for α ∈ (7.01, 9) (see Figure
3.2e), followed by a widow of hyper-chaotic behavior via intermittence scenario (see Figure
3.2f).
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Figure 3.1: The two largest Lyapunov exponents and the bifurcation diagram of x versus
α ∈ [0, 9.2], for β = 10, γ = 0.11, ξ = 0.1, a = 1.5 and b = 1.

4 Adaptive control of the memristor-based Chua’s system

In this section, we construct an adaptive control law in the objective to stabilize the memristor-
based Chua’s system with unknown system parameters. The main adaptive control result is
established via Lyapunov stability theory.

We consider the memristor-based Chua’s system given by



dx(t)
dt

= α[y(t)− x(t) + ξx(t)− (−a + b|ω|)x(t)] + u1,

dy(t)
dt

= x(t)− y(t) + z(t) + u2,

dz(t)
dt

= −βy(t)− γz(t) + u3,

dω(t)
dt

= x(t) + u4.

(4.1)
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Figure 3.2: Time evolution and phase portrait for: β = 10, γ = 0.11, ξ = 0.1, a = 1.5 b = 1,
and (a) α = 5, (b) α = 6.5, (c) α = 7, (d) α = 8, and (e) α = 9.15.
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Where, α, β, γ, ξ, a and b are considered as constant unknown parameters, and ui,
i = 1, ..., 4 is an adaptive control law that will be formulated using estimates α̂(t), β̂(t) and
γ̂(t) of the unknown parameters α, β and γ respectively.

We propose the adaptive control law defined by
u1 = −α̂(t) [y(t)− x(t) + ξx(t)− (−a + b |ω(t)|) x(t)]− k1x(t),

u2 = −x(t) + y(t)− z(t)− k2y(t),

u3 = β̂(t)y(t) + γ̂(t)z(t)− k3z(t),

u4 = −x(t)− k4(ω(t)− ωe),

(4.2)

where k1, k2, k3 and k4 are positive gain constants.
Substituting (4.2) into (4.1), we get the closed-loop control system as

dx(t)
dt

= (α − α̂(t))[y(t)− x(t) + ξx(t)− (−a + b|ω|)x(t)]− k1x(t),

dy(t)
dt

= −k2y(t),

dz(t)
dt

= −(β − β̂(t))y(t)− (γ − γ̂(t))z(t)− k3z(t),

dω(t)
dt

= −k4(ω(t)− ωe).

(4.3)

The errors of parameter estimation are
eα = α − α̂(t),
eβ = β − β̂(t),
eγ = γ − γ̂(t).

(4.4)

Taking the derivative of (4.4) with respect to time t yields:

deα

dt
= −dα̂(t)

dt
,

deβ

dt
= −dβ̂(t)

dt
,

deγ

dt
= −dγ̂(t)

dt
.

(4.5)

Using (4.4), the closed-loop system (4.3) can be simplified as

dx(t)
dt

= eα [y(t)− x(t) + ξx(t)− (−a + b|ω|)x(t)]− k1x(t),

dy(t)
dt

= −k2y(t),

dz(t)
dt

= −eβy(t)− eγz(t)− k3z(t),

dω(t)
dt

= −k4(ω(t)− ωe).

(4.6)

We construct an update law for the parameter estimation, based on Lyapunov direct
method.. Namely we adopt the Lyapunov candidate function

V =
1
2

(
x2 + y2 + z2 + (ω − ωe)

2 + e2
α + e2

β + e2
γ

)
. (4.7)
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It is obvious that the function V is a positive definite on R7.
We differentiate V on the solutions of (4.6) and (4.5), we obtain

dV
dt

= −k1x2 − k2y2 − k3z2 − k4(ω − ωe)
2 + eα

[
yx − x2 + ξx2 − (−a + b |ω|) x2 − dα̂

dt

]

+eβ

(
−yz − dβ̂

dt

)
+ eγ

(
−z2 − dγ̂

dt

)
. (4.8)

In view of (4.8), we take the parameter update law as

dα̂(t)
dt

= yx − x2 + ξx2 − (−a + b |ω|) x2,

dβ̂(t)
dt

= −yz,

dγ̂(t)
dt

= −z2.

(4.9)

Next, we state and prove the main result of this section.

Theorem 4.1. The memristor-based Chua’s system (4.1) with unknown parameters is globally expo-
nentially stabilized by the adaptive control law (4.2), and the parameter update (4.9), where k1, k2, k3

and k4 are positive gain constants.

Proof. The quadratic Lyapunov function V defined by (4.7) is positive definite on R7.
Substituting (4.9) into (4.8), we obtain the time derivative of V as

dV
dt

= −k1x2 − k2y2 − k3z2 − k4(ω − ωe)
2, (4.10)

which is negative semi definite on R7.
We define k = min(k1, k2, k3, k4).
Then it follows from (4.10) that

dV
dt

= −k1x2 − k2y2 − k3z2 − k4(ω − ωe)
2 ≤ −kx2 − ky2 − kz2 − k(ω − ωe)

2 = −k∥X∥2, (4.11)

where X = (x, y, z, (ω − ωe)).
That is,

∥X∥2 ≤ −dV
dt

. (4.12)

Integrating the inequality (4.12) from 0 to t, we get

∫ t

0
∥X(τ)∥2dτ ≤ V(0)− V(t). (4.13)

From (4.13), it follows that X(t) ∈ L2, while from (4.6), it can be deduced that
dX
dt

∈ L∞.

Thus, by Barbalat’s lemma [13], we conclude that X(t) → 0 exponentially as t → ∞ for all
initial conditions X(0) ∈ R4.

This completes the proof. □
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5 Numerical simulations

To validate the theoretical findings mentioned above, we implement the proposed adaptive
control law (4.2) to stabilize two unstable equilibria: specifically, the origin (x, y, z, ω) =

(0, 0, 0, 0) and (x, y, z, ω) = (0, 0, 0, 1.32).
The system of differential equations (4.1) and (4.9), along with the control law (4.2), are

solved numerically using a Matlab code based on the classical fourth-order Runge-Kutta
method with a step size of h = 0.01.

We take the parameter values as in (3.1), and set α = 9.15, together with the initial condi-
tions x(0) = 1.2956, y(0) = 0.9294, z(0) = 0.1573, ω(0) = 1.1365.
Additionally, regarding the initial conditions for the parameter estimates, we select α̂(0) =

9.1439, β̂(0) = 10.0029 and γ̂(0) = 0.1355, and the gain constants as k1 = 0.1, k2 = 0.02,
k3 = 0.5, k4 = 0.02.

Figure 5.1, illustrates the stabilization of the origin using the proposed adaptive control
law (4.2), the time-histories of the controlled states x, y, z and ω of the memristor-based Chua’s
hyperchaotic system are depicted in Figure (5.1a), and the evolution of the control effort in
Figure (5.1b), whereas the time-histories of the estimated α̂, β̂ and γ̂ are depicted in Figure
(5.1c).

Figure 5.2, highlights the stabilization of the unstable equilibrium point (x, y, z, ω) =

(0, 0, 0, 1.32), using the proposed adaptive control law (4.2). The evolution of the controlled
states x, y, z and ω is depicted in Figure (5.2a), and the time-histories of the control effort in
Figure (5.2b), whereas the evolution of the estimated α̂, β̂ and γ̂ are depicted in Figure (5.2c).

6 Conclusion

In this paper, the dynamic properties of a 4-dimensional memristor-based Chua’s circuit are
analyzed, particularly the existence of the chaotic and hyperchaotic behavior is demonstrated
using the Lyapunov spectrum and phase portrait. To address these undesirable behaviors,
we developed an adaptive control law that stabilizes unstable equilibrium points, taking into
account unknown system parameters. The efficacy of the proposed approach is validated
through numerical simulations.
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Figure 5.1: Stabilization of the origin (x, y, z, ω) = (0, 0, 0, 0), using the adaptive control law
(4.2), with the initial conditions for the parameter estimates, α̂(0) = 9.1439, β̂(0) = 10.0029,
γ̂(0) = 0.1355, and the constant gains k1 = 0.1, k2 = 0.02, k3 = 0.5, k4 = 0.02. (a) Time-history
of the controlled states x, y, z and ω. (b) Time-history of the control effort u1, u2, u3 and u4. (c)
Time-history of the estimated parameters α̂, β̂ and γ̂.
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Figure 5.2: Stabilization of the unstable equilibrium (x, y, z, ω) = (0, 0, 0, 1.32), using the adap-
tive control law (4.2), with the initial conditions for the parameter estimates, α̂(0) = 9.1439,
β̂(0) = 10.0029, γ̂(0) = 0.1355, and the constant gains k1 = 0.1, k2 = 0.02, k3 = 0.5, k4 = 0.02.
(a) Time-history of the controlled states x, y, z and ω. (b) Time-history of the control effort
u1, u2, u3 and u4. (c) Time-history of the estimated parameters α̂, β̂ and γ̂.
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