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Abstract. In this paper, the semi-analytic iterative method (SAIM) and modified simple
equation method (MSEM) have been implemented to obtain solutions of the general-
ized Burgers-Fisher equation (GBFE). To demonstrate the accuracy, efficacy as well as
reliability of the methods in finding the exact solution of the equation, a selection of
numerical examples were given and a comparison was made with other well-known
methods from the literature such as variational iteration method, homotopy perturba-
tion method and diagonally implicit Runge-Kutta method. The results have shown
that between the proposed methods, the MSEM is much faster, easier, more concise
and straightforward for solving nonlinear partial differential equations as it does not
require the use of any symbolic computation software such as Maple or Mathematica.
Additionally, the iterative procedure of the SAIM has merit in that each solution is an
improvement of the previous iterate and as more and more iterations are taken, the
solution converges to the exact solution of the equation.

Keywords: Generalized Burgers-Fisher equation, Semi-analytic iterative method, Mod-
ified simple equation method.
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1 Introduction

The generalized Burgers-Fisher equation is a very important nonlinear partial differential
equation which has found application in many areas of applied sciences such as heat con-
duction, fluid mechanics, elasticity, gas dynamics, plasma physics, and number theory. This
equation has also been applied in various fields of physics and engineering, for instance,
dispersion of pollutants in rivers, chemical kinetics, ion propagation in plasma, solid state
physics, optical fibres, shock-wave formation and propagation, traffic flow, turbulence, finan-
cial mathematics, sound wave in viscous medium, and in some other applications [4].

The Burgers-Fisher equation in its generalized form arises from a fusion of the Burgers’
and Fisher’s equations and is therefore of great importance for describing different mecha-
nisms in applied sciences. However, this equation is a prototypical model for describing the
interaction between reaction mechanisms, convection effects and diffusion transports [1].
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The aim of this paper is to obtain solutions of the GBFE using two methods. The first
is the semi-analytic iterative method (SAIM) first proposed by Temimi and Ansari [20, 21]
and the second is the modified simple equation method (MSEM), applied, for example, in
the solution of Burgers, Huxley and Burgers-Huxley equations [5] and nonlinear evolution
equations [9, 19]. We also compare our results from these two methods with those from
other well-known methods in the literature: the variational iteration method [18], homotopy
perturbation method [16, 18] and diagonally implicit Runge-Kutta method [14].

Several other numerical and analytical methods have been used in the literature to solve
the GBFE. For example, Mohammadi [13] applied a numerical method based on exponential
spline and finite difference approximations in the solution of the GBFE and studied error
analysis, stability and convergence properties of the method. Mendoza and Muriel [12] ob-
tained new travelling wave solutions to the GBFE using a method that exploits the existence
of a λ-symmetry for the class of equations that can be linearised by a generalized Sundman
transformation. Kumar and Saha Ray [10] used the discontinuous Legendre wavelet Galerkin
method to obtain the numerical solution of the Burgers-Fisher and generalized Burgers-Fisher
equations. Zhong et al. [22] applied the modified high-order Haar wavelet scheme with the
third-order Runge-Kutta method to the solution of the GBFE and generalized Burgers-Huxley
equation. This method was found to have improved the speed of convergence while ensuring
stability. And Ramya et al. [15] deployed the Exp Function (EF) and Exponential Rational
Function (ERF) methods to investigate the analytical solutions of the time-fractional GBFE by
means of a conformable operator

ut + uux + γuxx = 0,

is a fundamental nonlinear partial differential equation appearing in various areas of mathe-
matical physics such as those mentioned earlier. The Fisher’s equation

ut + γuxx = βu(1 − u),

is a reaction-diffusion equation first proposed by Fisher in the context of population dynamics.
In this paper we consider the generalized Burgers-Fisher equation of the form:

ut + αuδux + γuxx = βu(1 − uδ), 0 ≤ x ≤ 1, t ≥ 0, (1.1)

subject to the boundary and initial conditions below, where α, β, γ and δ are arbitrary con-
stants in R with α , 0 [12] and β ≥ 0, δ > 0 [7]. Here, the boundary and initial conditions are,

respectively,

u(0, t) =
[

1
2
+

1
2

tanh
(

αδ

2(δ + 1)

(
α

δ + 1
+

β(δ + 1)
α

)
t
)] 1

δ

= g1(t), t ≥ 0,

u(1, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)

(
1 −

(
α

δ + 1
+

β(δ + 1)
α

)
t
))] 1

δ

= g2(t), t ≥ 0,

and

u(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

= g(x). (1.2)

The exact solution of Eq. (1.1) when γ = −1 is of the form:

u(x, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)

(
x −

(
α

δ + 1
+

β(δ + 1)
α

)
t
))] 1

δ

. (1.3)
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The rest of the paper is structured as follows: The proposed methods of solution are
reviewed in Section 2, while Section 3 gives illustrative numerical examples. Finally, Section 4
concludes the paper.

2 Review of the Proposed Methods

2.1 Preliminary Concepts of SAIM

The SAIM was proposed and it uses an iterative approach to provide solution to the nonlinear
generalized Burgers-Fisher equation. To explain the basic idea of the SAIM, let us consider
the general equation

L[u(x, t)] + N[u(x, t)] = G(x, t), (2.1)

with boundary conditions

C
(

u,
∂u
∂t

)
= 0,

where u is the unknown function, L the linear operator, N the nonlinear operator, G is a source
term which is a known function of the independent variables x and t and C the boundary
operator. The initial approximation is a primary step in the SAIM. Therefore, assuming that
the initial guess u0(x, t) is a solution of the problem, the solution of the equation can be
obtained by solving

L[u0(x, t)] = 0 with C
(

u0,
∂u0

∂t

)
= 0,

from which u0(x, t) = u(x, 0) = g(x) (see Eq. (1.2) above). To find the next iteration, we solve
the equation

L[u1(x, t)] = −N[u0(x, t)] + G(x, t) with C
(

u1,
∂u1

∂t

)
= 0.

Similarly, the third iteration involves solving the equation

L[u2(x, t)] = −N[u1(x, t)] + G(x, t) with C
(

u2,
∂u2

∂t

)
= 0,

and so on. Thus, after several iterations, we obtain the general form of the problem to be
solved using the SAIM as

L[un+1(x, t)] = −N[un(x, t)] + G(x, t) with C
(

un+1,
∂un+1

∂t

)
= 0,

which gives the general iterative relation for solving Eq. (2.1) as

un+1(x, t) = un+1(x, 0) + L−1 {−N [un(x, t) + G(x, t)]} ,

where L−1 =
∫ t

0 (·)ds. It is important to note that each of the un(x, t) are standalone solutions
to Eq. (2.1) [2]. We therefore believe that this iterative procedure has merit in that each
solution is an improvement of the previous iterate and as more and more iterations are taken,
the solution converges to the solution of Eq. (2.1). Details of the SAIM can be found in Latif
et al. [11], Ibrahim et al. [6], Kasumo [8] and Selamat et al. [17].
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2.2 Application of SAIM to the GBFE

Consider the generalized Burgers-Fisher equation

ut + αuδux − uxx = βu(1 − uδ), (2.2)

subject to the initial condition

u(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

.

The equation (2.2) can be rearranged as:

ut − uxx + αuδux − βu(1 − uδ) = 0, (2.3)

where α, β and δ are constants with α , 0, β ≥ 0, δ > 0. By applying the SAIM to (2.3) after
comparing with (2.1), we have

Lu + Nu = 0,

with Lu = ut, Nu = −uxx + αuδux − βu(1 − uδ), G(x, t) = 0. Thus, the primary problem that
needs to be solved, together with its associated initial condition, is

L(u0) = 0, with u0(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

,

where ∫ t

0
u0s(x, s)ds = 0.

Thus, we obtain

u0(x, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

.

For the second iteration, we need to solve the equation

L[u1(x, t)] = −N[u0(x, t)] + G(x, t) with u1(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

,

after rearranging Eq. (2.2) as

ut = uxx − αuδux + βu(1 − uδ), (2.4)

where ∫ t

0
u1s(x, s)ds =

∫ t

0

[
(u0)xx − α(u0)

δ(u0)x + βu0(1 − uδ
0)
]

ds.

For the third iteration, we solve Eq. (2.4) by solving the equation

L[u2(x, t)] + N[u1(x, t)] + G(x, t) = 0 with u2(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

,

where ∫ t

0
u2s(x, s)ds =

∫ t

0

[
(u1)xx − α(u1)

δ(u1)x + βu1(1 − uδ
1)
]

ds,
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and so on. Thus, by the same iterative steps, the other solutions can be generated from the
general iterative formula

L[un+1(x, t)] + N[un(x, t)] + G(x, t) = 0 with un+1(x, 0) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)
x
)] 1

δ

,

where ∫ t

0
u(n+1)s

(x, s)ds =
∫ t

0

[
(un)xx − α(un)

δ(un)x + βun(1 − uδ
n)
]

ds.

2.3 Preliminary Concepts of MSEM

Suppose the nonlinear partial differential equation to be considered is of the form

P(u, ut, ux, utt, uxx, . . .) = 0, (2.5)

where P is a polynomial in u(x, t) and its various partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. The main steps of the MSEM are outlined
in Ayati et al. [5] and are as follows :

Step 1. The travelling wave transformation

u(x, t) = u(ξ), ξ = x − ct,

where c is the speed of the travelling wave, permits us to reduce Eq. (2.5) into the following
ordinary differential equation:

F(u, u′, u′′, . . .) = 0, (2.6)

where F is a polynomial in u(ξ) and its total derivatives, wherein u′(ξ) =
du
dξ

[9]. Hence, we

use the following changes [19]:

∂

∂t
(·) = −c

∂

∂ξ
(·), ∂

∂x
(·) = ∂

∂ξ
(·), ∂2

∂x2 (·) =
∂2

∂ξ2 (·), . . . (2.7)

for other derivatives.

Step 2. We suppose that the exact solution of Eq. (2.6) is of the form

u(ξ) =
N

∑
k=0

Ak

[
Φ′(ξ)

Φ(ξ)

]k

, (2.8)

where Ak (k = 0, 1, 2, 3, . . . , N) are arbitrary constants to be determined, such that AN , 0
and Φ(ξ) is an unknown function to be determined later such that Φ′(ξ) , 0.

Step 3. We determine the positive integer N in Eq. (2.8) by considering the homogeneous
balance between the highest order derivatives or linear terms and the highest order nonlinear
terms occurring in Eq. (2.6).

Step 4. Inserting Eq. (2.8) into Eq. (2.6) and computing the necessary derivatives u′, u′′, . . . ,
we then account for the function Φ(ξ). As a result of this substitution, we get a polynomial in
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Φ′(ξ)
Φ(ξ)

and its derivatives. Equating all the coefficients of like power of this polynomial to zero,
we obtain a system of equations which can be solved to find Ak (k = 0, 1, 2, 3, . . .) and Φ(ξ).
Consequently, we can get the exact solution of Eq. (2.5).

2.4 Application of MSEM to the GBFE

In this section, the modified simple equation method was applied to find the exact solutions
and then the solitary wave solutions of the generalized Burgers-Fisher equation (GBFE) of the
form

ut + αuδux − uxx = βu(1 − uδ). (2.9)

Rearranging Eq. (2.9) yields

ut − uxx + αuδux − βu(1 − uδ) = 0, (2.10)

where α, δ and β are nonzero constants. Using the travelling wave transformation,

u(x, t) = u(ξ), ξ = x − ct,

where c is constant, and substituting (2.7) into (2.10), we obtain an ODE

−cu′ − u′′ + αuδu′ − βu(1 − uδ) = 0, (2.11)

where in Eq. (2.11) u ⇒ u(ξ), and integrating (2.11) with respect to ξ gives

−cu − u′ + αuδu + β(uδ − 1) = 0. (2.12)

Balancing the highest-order derivative u′ and the nonlinear term uδ, where δ is a positive
integer (δ ≥ 2). The solution of Eq. (2.9) takes the form

u(ξ) =
N

∑
k=0

Ak

[
Φ′(ξ)

Φ(ξ)

]k

.

Thus,

u(ξ) = A0 + A1

(
Φ′

Φ

)
+ · · ·+ AN

(
Φ′

Φ

)
. (2.13)

where Ak (k = 0, 1, . . . , N) are arbitrary constants in R such that AN , 0, and Φ(ξ) is an
unknown function to be determined later. Therefore, the needful computations for Eq. (2.12)
are as follows:

u′(ξ) = A1

[
Φ′′

Φ
−
(

Φ′

Φ

)2
]

,

u′′(ξ) = A1

[
Φ′′′

Φ
− 3

Φ′Φ′′

Φ2 + 2
(

Φ′

Φ

)3
]

.

Substituting Eq. (2.13) and u′ into Eq. (2.12) yields a polynomial in 1
Φj (j = 0, 1, 2, . . .) and

equating the coefficients of Φ0, Φ−1, Φ−2, Φ−3, . . . to zero, gives the values of A0, A1, . . . , AN

and an ODE of the form F(u, u′, u′′, . . .) = 0. Thus,

−cA0 +
α

2
A2

0 − βA0

(
1 − Aδ

0

)
= 0,
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and we get

u(ξ) = A0

(
Φ′

Φ

)0

+ A1

(
Φ′

Φ

)1

+ · · ·+ AN

(
Φ′

Φ

)N

.

Hence, the exact solution of Eq. (2.10) is obtained by u(ξ) 7→ u(x, t) as

u(x, t) = A0 + A1

(
Φ′

Φ

)
+ · · ·+ AN

(
Φ′

Φ

)N

=
N

∑
k=0

Ak

(
Φ′

Φ

)k

. (2.14)

This is the proof of the formula in (2.8).

3 Numerical Examples

In this section we study a selection of examples illustrating the applicability of both the SAIM
and MSEM for solving a nonlinear generalized Burgers-Fisher equation with parameters in
R. All the computations associated with these examples were performed using an HP 250
G5 Notebook PC with Intel Celeron CPU N3060 at 1.6 GHz with 2 GB internal memory
and 64 bit operating system (Windows 10 Pro, Version 22H2). All the figures in this section
were constructed using MATLAB R2023a. The results are presented in tables and figures
accompanying the discussion.

Example 3.1. In order to ascertain the capability and reliability of the proposed methods,
we consider the Burgers-Fisher equation (2.2) for δ = 1, α = −1 and β = 2 [18], that is,

ut = uxx + uux + 2u − 2u2, (3.1)

subject to the initial condition

u(x, 0) =
e

x
4

e
x
4 + e−

x
4

.

SAIM Scheme. By applying the SAIM to (3.1) after comparing with (2.1), we have

Lu + Nu = 0,

with Lu = ut, Nu = −uxx − uux − 2u + 2u2 and G(x, t) = 0. Thus, the primary problem to be
solved, with its initial condition, is

L(u0) = 0 with u0(x, 0) =
e

x
4

e
x
4 + e−

x
4

,

where ∫ t

0
u0s(x, s)ds = 0.

Thus, we obtained

u0(x, t) =
e

x
4

e
x
4 + e−

x
4

.

For the second iteration, we solve the following equation

L[u1(x, t)] + N[u0(x, t)] + G(x, t) = 0 with u1(x, 0) =
e

x
4

e
x
4 + e−

x
4

.
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After considering Eq. (3.1) with∫ t

0
u1t(x, s)ds =

∫ t

0

[
(u0)xx − (u0)(u0)x + u0 − (u0)

2] ds,

that is,

∫ t

0
u1t(x, s)ds =

∫ t

0

( e
x
4

e
x
4 + e−

x
4

)
xx

−
(

e
x
4

e
x
4 + e−

x
4

)(
e

x
4

e
x
4 + e−

x
4

)
x

+
e

x
4

e
x
4 + e−

x
4
−
(

e
x
4

e
x
4 + e−

x
4

)2
 ds,

we obtained

u1(x, t) =
e

x
4

e
x
4 + e−

x
4
−

 2e
x
2(

e
x
4 + e−

x
4

)2 − 3e
x
4(

e
x
4 + e−

x
4

)
 t. (3.2)

Simplifying (3.2), we have

u1(x, t) =
e

x
2

(
1 + 3t + e

x
2 + te

x
2

)
(

e
x
2 + 1

)2 .

The next iteration to be solved is

L[u2(x, t)] + N[u1(x, t)] + G(x, t) = 0 with u2(x, 0) =
e

x
4

e
x
4 + e−

x
4

,

where ∫ t

0
u2s(x, s)ds =

∫ t

0

[
(u1)xx − (u1)(u1)x + u1 − (u1)

2] ds.

From this we obtain

u2(x, t) =
e

x
2

e
x
2 + 1

+

(
3 + e

x
2

)
te

x
2

(
9t + 12e

x
2 + 6ex + 6te

x
2 − 4t2ex − 12t2e

x
2 − 3tex + 6

)
6
(

e
x
2 + 1

)4 .

By the same iterative steps, the other solutions can be obtained from solving these problems
in the general form

L[un+1(x, t)] + N[un(x, t)] + G(x, t) = 0 with un+1(x, 0) =
e

x
4

e
x
4 + e−

x
4

,

where ∫ t

0
u(n+1)s

(x, s)ds =
∫ t

0

[
(un)xx − (un)(un)x + un − (un)

2] ds,

thus achieving the following approximate solution in a series form [3]:

u(x, t) = lim
n→∞

un(x, t) =
∞

∑
n=0

vn.

This series converges to the exact solution

u(x, t) =
1
2
+

1
2

tanh
(

1
4

(
x +

9t
2

))
. (3.3)
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MSEM Scheme. Rearranging Eq. (3.1) gives

ut − uxx − uux − 2u + 2u2 = 0. (3.4)

Using the travelling wave transformation

u(x, t) = u(ξ), ξ = x − ct,

and considering Eq. (2.7), Eq. (3.4) becomes

−cu′ − u′′ − uu′ − 2u + 2u2 = 0, (3.5)

where in Eq. (3.5), u ⇒ u(ξ) and by integration, Eq. (3.5), gives

−cu − u′ − u2

2
− 2u + 2u2 = 0, (3.6)

or

−cu − 3
2

u2 − 2u = u′. (3.7)

Balancing the highest-order derivative u′ and the nonlinear term u2 in Eq. (3.7) (N + 1 = 2N),
we obtain N = 1. Therefore, the solution of Eq. (3.1) takes the form

u(ξ) = A0 + A1

(
Φ′

Φ

)
, (3.8)

where A0 and A1 are arbitrary constants in R such that A1 , 0, and Φ(ξ) is an unknown
function to be determined later. Now, it can be seen that

u′(ξ) = A1

[
Φ′′

Φ
−
(

Φ′

Φ

)2
]

, (3.9)

u′′(ξ) = A1

[
Φ′′′

Φ
− 3

Φ′Φ′′

Φ2 + 2
(

Φ′

Φ

)3
]

. (3.10)

Substituting Eq. (3.8) and Eq. (3.9) into Eq. (3.7) yields a polynomial and equating coefficients
of Φ−j (j = 0, 1, 2) to zero, we obtain

−cA0 −
3
2

A2
0 − 2A0 = 0, (3.11)

as shown in [5]. That is,
(−c − 3A0 − 2)Φ′ − Φ′′ = 0, (3.12)

and (
−3

2
A2

1 + A1

)
(Φ′)2 = 0. (3.13)

By solving Eqs. (3.11) and (3.13) the following results are obtained:

A0 = 0, − 2
3 (c + 2) and A1 = 2

3 .
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Case 1. When A0 = 0, Eq. (3.12) becomes

(−c − 2)Φ′ − Φ′′ = 0.

So
Φ′ = Ae−(c+2)ξ , (3.14)

where A is an arbitrary constant in R. Integrating (3.14) with respect to ξ, Φ(ξ) will be
obtained as follows:

Φ = − A
c + 2

e−(c+2)ξ + B,

where B is a constant of integration. Now the exact solution of Eq. (3.4) has the form

u1(x, t) =
2
3 Ae−(c+2)(x−ct)

− A
c+2 e−(c+2)(x−ct) + B

,

where c , −2 and B , 0.
Case 2. When A0 = − 2

3 (c + 2), Eq. (3.12) reduces to

(c + 2)Φ′ − Φ′′ = 0.

So
Φ′ = Ae(c+2)ξ ,

and, by integration,

Φ =
A

c + 2
e(c+2)ξ + B.

Now, the exact solution of Eq. (3.4) has the form

u2(x, t) =
− 2

3 (c + 2)B
A

c+2 e(c+2)(x−ct) + B
,

or

u2(x, t) =
− 2

3 (c + 2)2B
Ae(c+2)(x−ct) + (c + 2)B

,

where c , −2 and A, B , 0. Thus,

u(x, t) =
1
2
+

1
2

tanh
(

1
4

(
x +

9t
2

))
. (3.15)

Results for Example 3.1. Here, we validate the authenticity and efficacy of both SAIM and
MSEM in providing solutions to the generalized Burgers-Fisher equation by comparing the
exact solution with the solutions obtained from both the SAIM and the MSEM. Furthermore,
we have compared solutions of SAIM and MSEM for δ = 1, α = −1 and β = 2. The exact
solution of the generalized Burgers-Fisher equation in Eq. (2.2) is given by

u(x, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)

(
x −

(
α

δ + 1
+

β(δ + 1)
α

)
t
))] 1

δ

. (3.16)

Setting δ = 1, α = −1 and β = 2 gives the exact solution in (3.15).

Comparison of exact solution and approximate solutions from SAIM, MSEM, VIM
and HPM. We present the exact and approximate solutions of the generalized Burgers-Fisher
equation for 0 ≤ x ≤ 1 and t = 0.1. The results are shown in Table 3.1 and Figures 3.1 and 3.2
from which it can be seen that SAIM and MSEM both produce exact solutions also obtained
using VIM [18] and HPM [16].
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Table 3.1: Comparison of exact solution and approximate solutions from SAIM, MSEM, VIM
and HPM for Example 3.1 (δ = 1, α = −1 and β = 2)

x uExact(x, t) uSAIM(x, t) uMSEM(x, t) uVIM(x, t) uHPM(x, t)
0 0.556013890544 0.556013890544 0.556013890544 0.556013890544 0.556013890544

0.1 0.568319983478 0.568319983478 0.568319983478 0.568319983478 0.568319983478
0.2 0.580542304820 0.580542304820 0.580542304820 0.580542304820 0.580542304820
0.3 0.592666599954 0.592666599954 0.592666599954 0.592666599954 0.592666599954
0.4 0.604679084714 0.604679084714 0.604679084714 0.604679084714 0.604679084714
0.5 0.616566504521 0.616566504521 0.616566504521 0.616566504521 0.616566504521
0.6 0.628316188295 0.628316188295 0.628316188295 0.628316188295 0.628316188295
0.7 0.639916096738 0.639916096738 0.639916096738 0.639916096738 0.639916096738
0.8 0.651354864666 0.651354864666 0.651354864666 0.651354864666 0.651354864666
0.9 0.662621837170 0.662621837170 0.662621837170 0.662621837170 0.662621837170
1 0.673707099455 0.673707099455 0.673707099455 0.673707099455 0.673707099455

 

Figure 3.1: Surface plot for Example 3.1

 

Figure 3.2: Comparison of exact solution
and approximate solutions from SAIM,
MSEM, VIM and HPM for 0 ≤ x ≤ 1 for a
fixed t = 0.1

Example 3.2. We consider the GBFE (2.2) for δ = 1, α = 1 and β = 1 as shown below [14]:

ut = uxx − uux + u − u2, (3.17)

subject to the initial condition

u(x, 0) =
e−

x
2

e−
x
2 + 1

.

SAIM Scheme. By applying the SAIM to Eq. (3.17), after comparing with (2.1), we have
Lu = ut, Nu = −uxx + uux − u + u2, G(x, t) = 0. Thus, the primary problem that needs to be
solved, together with its initial condition, is

L(u0) = 0 with u0(x, 0) =
e−

x
2

e−
x
2 + 1

,
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where ∫ t

0
u0t(x, t)ds = 0,

from which we obtained

u0(x, t) =
e−

x
2

e−
x
2 + 1

.

Applying the SAIM idea successively, we obtain the following:

u1(x, t) =
e−

x
2 + (t + 1)e−x

(e−
x
2 + 1)2

,

u2(x, t) =
e−

x
2 + (t + 1)e−x

(e−
x
2 + 1)2

+
t(3t + 6e

x
2 + 3ex + 3te

x
2 + t2 + 3)

3(e
x
2 + 1)4

,

and so on. Thus, the series converges to the exact solution

u(x, t) =
1
2
+

1
2

tanh
(

5t
8
− x

4

)
. (3.18)

MSEM Scheme. Eq. (3.17) can be rewritten as

ut − uxx + uux − u + u2 = 0. (3.19)

We use the travelling wave transformation

u(x, t) = u(ξ), ξ = x − ct.

Considering Eq. (2.7), Eq. (3.19) becomes

−cu′ − u′′ + uu′ − u + u2 = 0, (3.20)

where in Eq. (3.20), u ⇒ u(ξ) and by integration, Eq. (3.20), gives

−cu − u′ +
u2

2
− u + u2 = 0,

or
−cu +

3
2

u2 − u = u′. (3.21)

Balancing the highest-order derivative u′ and the nonlinear term u2 in Eq. (3.21) (N + 1 = 2N),
we obtain N = 1. Therefore, the solution of Eq. (3.19) takes the following form

u(ξ) = A0 + A1

(
Φ′

Φ

)
, (3.22)

where A0 and A1 are arbitrary constants in R such that A1 , 0, and Φ(ξ) is an unknown
function to be determined later. Substituting Eq. (3.22) and Eq. (3.9) into Eq. (3.21) yields a
polynomial and equating coefficients of Φ−j (j = 0, 1, 2) to zero, we obtain

−cA0 +
3
2

A2
0 − A0 = 0, (3.23)

as shown by [5]. That is,
(−c + 3A0 − 1)Φ′ − Φ′′ = 0, (3.24)

and (
3
2

A2
1 + A1

)
(Φ′)2 = 0. (3.25)

By solving Eqs. (3.23) and (3.25) we obtain the following results:
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A0 = 0, 2
3 (c + 1) and A1 = − 2

3 .

Case 1. When A0 = 0, Eq. (3.23) becomes

(−c − 1)Φ′ − Φ′′ = 0.

So
Φ′ = Ae−(c+1)ξ , (3.26)

where A is an arbitrary constant in R. Integrating (3.26) with respect to ξ, Φ(ξ) will be
obtained as follows

Φ = − A
c + 1

e−(c+1)ξ + B,

where B is a constant of integration. Now the exact solution of Eq. (3.19) has the form

u1(x, t) =
− 2

3 Ae−(c+1)(x−ct)

− A
c+1 e−(c+1)(x−ct) + B

,

where c , −1 and B , 0.

Case 2. When A0 = 2
3 (c + 1), Eq. (3.24) becomes

(c + 1)Φ′ − Φ′′ = 0.

So
Φ′ = Ae(c+1)ξ ,

and, by integration,

Φ =
A

c + 1
e(c+1)ξ + B.

Now, the exact solution of Eq. (3.19) has the form

u2(x, t) =
2
3 (c + 1)B

A
c+1 e(c+1)(x−ct) + B

,

or

u2(x, t) =
2
3 (c + 1)2B

Ae(c+1)(x−ct) + (c + 1)B
,

where c , −1 and A, B , 0. Thus,

u(x, t) =
1
2
+

1
2

tanh
(

5t
8
− x

4

)
. (3.27)

Results for Example 3.2. Here, we validate the authenticity and efficacy of both the SAIM
and the MSEM in providing solutions to the generalized Burgers-Fisher equation by compar-
ing the exact solution with the solutions from both methods. Furthermore, we have compared
solutions from the SAIM and MSEM for δ = 1, α = 1 and β = 1. The exact solution of the
generalized Burgers-Fisher equation in Eq. (2.2) is given by

u(x, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)

(
x −

(
α

δ + 1
+

β(δ + 1)
α

)
t
))] 1

δ

.
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Table 3.2: Comparison of exact solution and approximate solutions from SAIM, MSEM and
DIRK for Example 3.2 for 0 ≤ x ≤ 1 for a fixed t = 0.001

x uExact(x, t) uSAIM(x, t) uMSEM(x, t) uDIRK(x, t) E = |uDIRK − uExact|
0 0.500312500 0.500312500 0.500312500 0.500296875 0.000015625

0.2 0.475332542 0.475332542 0.475332542 0.475696774 0.000364232
0.4 0.450475418 0.450475418 0.450475418 0.450807926 0.000332508
0.6 0.425863084 0.425863084 0.425863084 0.426164317 0.000300477
0.8 0.401612703 0.401612703 0.401612703 0.401884622 0.000271919
1 0.377834468 0.377834468 0.377834468 0.377819776 0.000014692

 

Figure 3.3: Surface plot for Example 3.2

 

Figure 3.4: Comparison of exact solutions
and approximate solutions from SAIM,
MSEM and DIRK for 0 ≤ x ≤ 1 for a fixed
t = 0.001

Thus, for δ = 1, α = 1 and β = 1, the exact solution is given by Eq. (3.27).

Comparison of exact solutions and approximate solutions from SAIM, MSEM and
DIRK. We present the exact and approximate results of generalized Burgers-Fisher equation
for 0 ≤ x ≤ 1 and t = 0.001. The results are shown in Table 3.2 and Figures 3.3 and 3.4. Here
also, SAIM and MSEM perform better than DIRK [14].

Example 3.3. Consider the GBFE (2.2) for δ = 3, α = 50 and β = 0.01. Then we have [14]:

ut = uxx − 50u3ux + 0.01u − 0.01u4 (3.28)

subject to the initial condition

u(x, 0) =

(
1
2
+

e−
75x

2 − 1

2(e−
75x

2 + 1)

) 1
3

.

SAIM Scheme. By applying the SAIM to (3.28) after comparing with (2.1), we have

Lu + Nu = 0,
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with Nu = −uxx + 50u3ux − 0.01u + 0.01u4 and G(x, t) = 0. Thus, the primary problem to be
solved is

L(u0) = 0 with u0(x, 0) =

(
1
2
+

e−
75x

2 − 1

2(e−
75x

2 + 1)

) 1
3

,

where ∫ t

0
u0t(x, t)ds = 0.

From this, we obtain

u0(x, t) =

(
1
2
+

e−
75x

2 − 1

2(e−
75x

2 + 1)

) 1
3

.

For the next iteration, we obtain the following

u1(x, t) =

(
1
2
+

e−
75x

2 − 1

2(e−
75x

2 + 1)

) 1
3

−

50

(
1
2
+

e−
75x

2 − 1

2(e−
75x

2 + 2)

) 1
3

+

(
1
2 + e−

75x
2 −1

2(e−
75x

2 +2)

) 1
4

100
− e−

75x
2 − 1

100(e−
75x

2 + 2)
− 1

200

 ,

and so on. Continuing in this way, we obtain the exact solution

u(x, t) =
(

1
2
+

1
2

tanh
(

23439t
100

− 75x
4

)) 1
3

. (3.29)

MSEM Scheme. Considering Eq. (3.28), we rearrange it to obtain

ut − uxx + 50u3ux − 0.01u + 0.01u4 = 0. (3.30)

We use the travelling wave transformation

u(x, t) = u(ξ), ξ = x − ct.

Considering Eq. (2.7), Eq. (3.30) becomes

−cu′ − u′′ + 50u3u′ − 0.01u + 0.01u4 = 0, (3.31)

where in Eq. (3.31), u ⇒ u(ξ) and by integration, Eq. (3.31) gives

−cu − u′ − 0.01u + 12.51u4 = 0.

Thus,
−cu − 0.01u + 12.51u4 = u′. (3.32)

Therefore, the solution of Eq. (3.30) takes the form

u(ξ) = A0 + A1

(
Φ′

Φ

)
, (3.33)
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where A0 and A1 are arbitrary constants in R such that A1 , 0, and Φ(ξ) is an unknown
function to be determined later. Substituting Eq. (3.33) and Eq. (3.9) into Eq. (3.32) yields a
polynomial and equating coefficients of Φ−j (j = 0, 1, 2) to zero, we obtain

−cA0 − 0.01A2
0 + 12.51A4

0 = 0, (3.34)

(see Ayati et al. [5]). Thus, we have

(−c − 0.01 + 50.04A3
0)Φ

′ − Φ′′ = 0, (3.35)

and
(75.06A2

0A2
1 + A1)(Φ′)2 = 0. (3.36)

By solving Eqs. (3.34) and (3.36) we obtain the following results:

A0 = 0, − 100c and A1 = − 1
750600c2 .

Case 1. When A0 = 0, Eq. (3.35) becomes

(−c − 0.01)Φ′ − Φ′′ = 0.

So
Φ′ = Ae−(c+0.01)ξ , (3.37)

where A is an arbitrary constant in R. Integrating Eq. (3.37) with respect to ξ gives Φ(ξ) as

Φ = − A
c + 0.01

e−(c+0.01)ξ + B,

where B is a constant of integration. Now the exact solution of Eq. (3.30) has the form

u1(x, t) =
− 1

750600c2 Ae−(c+0.01)(x−ct)

− A
c+0.01 e−(c+0.01)(x−ct) + B

,

where c , −0.01 and A, B , 0.

Case 2. When A0 = −100c, Eq. (3.35) becomes

(−c − 0.01 − 50040000c3)Φ′ − Φ′′ = 0.

So
Φ′ = Ae−(c+0.01+50040000c3)ξ ,

and, by integration,

Φ = − A
c + 0.01 + 50040000c3 e−(c+0.01+50040000c3)ξ + B.

Now, the exact solution of Eq. (3.30) has the form

u2(x, t) =
−(c + 0.01 + 50040000c3)B

− A
c+0.01+50040000c3 e−(c+0.01+50040000c3)(x−ct) + B

,

or

u2(x, t) = − 100c2B
Ae−(c+0.01+50040000c3)(x−ct) + cB

,
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where A, B, c , 0. Thus,

u(x, t) =
(

1
2
+

1
2

tanh
(

23439t
100

− 75x
4

)) 1
3

. (3.38)

Results for Example 3.3. Here, we validate the authenticity and efficacy of both SAIM
and MSEM in providing solutions to the generalized Burgers-Fisher equation by comparing
the exact solution with results from both the SAIM and the MSEM. In particular, we have
compared solutions of SAIM and MSEM for δ = 3, α = 50 and β = 0.01. The exact solution of
the generalized Burgers-Fisher equation in Eq. (2.2) is given by

u(x, t) =
[

1
2
+

1
2

tanh
(

−αδ

2(δ + 1)

(
x −

(
α

δ + 1
+

β(δ + 1)
α

)
t
))] 1

δ

.

Thus, just like the SAIM, the MSEM yields the exact solution (3.38) for δ = 3, α = 50 and
β = 0.01.

Comparison of exact solutions and approximate solutions for SAIM, MSEM and
DIRK for a fixed t = 0.001. We present the exact and approximate solutions of the gener-
alized Burgers-Fisher equation for δ = 3, α = 50 and β = 0.01 for 0 ≤ x ≤ 1 and t = 0.001.
The results are shown in Table 3.3 and Figures 3.5 and 3.6. As in the previous examples, both
SAIM and MSEM perform better than DIRK.

Table 3.3: Comparison of exact solutions and approximate solutions from SAIM, MSEM and
DIRK for Example 3.3 (δ = 3, α = 50, β = 0.01 and t = 0.001)

x uExact(x, t) uSAIM(x, t) uMSEM(x, t) uDIRK(x, t) E = |uDIRK − uExact|
0 0.850447265480 0.850447265480 0.850447265480 0.847875175000 0.002572090480

0.2 0.095939788493 0.095939788493 0.095939788493 0.082152476100 0.013787312393
0.4 0.007877535617 0.007877535617 0.007877535617 0.006747621900 0.001129913717
0.6 0.000646627593 0.000646627593 0.000646627593 0.000553878871 0.000092748722
0.8 0.000053079393 0.000053079393 0.000053079393 0.000045467670 0.000007611723
1 0.000003814697 0.000003814697 0.000003814697 0.000003814697 0.000000000000

From the findings above, SAIM and MSEM both perform better than DIRK, as can be seen
from the absolute errors in Figure 3.7. However, MSEM obtains the exact solutions much faster
than SAIM and is more reliable and effective. Also, for SAIM each of the ui are standalone
solutions and the iterative procedure has merit in that each solution is an improvement of the
previous iterate and as more and more iterations are taken, the solution converges to the exact
solution of the equation.

4 Conclusion

In this work, the semi-analytic iterative method and modified simple equation method have
been successfully implemented to obtain the solution for the generalized Burgers-Fisher equa-
tion. A comparison of the two methods shows that the modified simple equation method is
effective and much simpler than the semi-analytic iterative method and other methods from
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Figure 3.5: Surface plot for Example 3.3

 

Figure 3.6: Comparison of exact solution
and approximate solutions from SAIM,
MSEM and DIRK for 0 ≤ x ≤ 1 for a fixed
t = 0.001

 

Figure 3.7: Absolute errors involving DIRK for Examples 3.2 and 3.3

the literature like variational iteration method and homotopy perturbation method. The SAIM
and the MSEM can both be applied in the solution of many other nonlinear partial differential
equations. Therefore, possible future work might include the use of these methods for solving
initial and boundary value ODEs and many other linear and nonlinear PDEs for cases where
δ is a negative integer and α and β are complex numbers.
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