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Abstract. Distances between data sets are used for analyses such as classification and
clustering analyses. Some existing distance metrics, such as the Manhattan (City Block
or L1) distance, are suitable for use with categorical data, where the data subtype is
numeric, or more specifically, integers. However, ordinality of categories imposes addi-
tional constraints on data distributions, and the ordering of categories should be con-
sidered in the calculation of distances. A new distance metric is presented here that is
based on the number of misclassifications that must have occurred within one data set
if it were in fact identical to another data set. This "misclassification distance" is equiva-
lent to the number of reclassifications necessary to transform one data set into another.
This metric takes account not only of the number of observations in corresponding or-
dinal categories but also of the number of categories across which observations must
be moved to correct all misclassifications. Each stepwise movement of an observation
across one or more categories that is required to equalize the distributions increases the
distance metric, thus this method is referred to as a stepwise ordinal misclassification
distance (SOMD). An algorithm is provided for the calculation of this metric.
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1 Introduction

Distance metrics are used for classification and clustering analyses, most commonly for the
analysis of multivariate data sets. Distance metrics have been developed for use with con-
tinuous, categorical, and ranked numerical data, with bit strings, and with character strings.
The choice of an appropriate distance metric for a particular data set is constrained to some
extent by the data subtype. For example, Euclidean distance [9, 10] is appropriate for contin-
uous variables (real numbers), whereas Manhattan distance [9] may be more appropriate for
discrete variables (integers). Other distance metrics have been defined to quantify differences
in relative magnitude (i.e., ’larger’ or ’smaller’) on a continuous scale [4, 11], for ranks [2, 12]
and for binary comparisons [5].

This paper presents a new distance metric for ordinal data with an integer subtype, such
as counts. Some existing distance metrics for ordinal data are based on the rankings of those
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categories for different objects. The Kendall tau distance is an example [1]. The distance metric
described here is based on the number of misclassifications in one ordinal data set (of integers)
relative to another. The number of misclassifications can also be interpreted as the number
of corrections that are needed to transform one data set into the other. Misclassification by
multiple ordinal steps is considered to be a larger error, and thus a larger distance, than
misclassification by a single ordinal step.

This metric does not represent a distance in multidimensional space, as does, for example,
the Manhattan distance, but represents a distance in terms of the number of errors that have
been made or the number of corrections that would need to be made.

Other distance metrics that are conceptually similar, in that they are also based on quan-
tifying the operations needed to transform one distribution into another, are the Levenshtein
distance (or edit distance) [7] between text strings, and the Wasserstein distance (or transport
distance) [8]. Neither of these are designed for, or applicable specifically to, categorical data.

Types of ordinal data to which this metric applies include Likert-scale data produced by
questionnaires [6], pain-scale data used in medical assessments, and successional stages and
life stages measured in ecological assessments [3].

2 Misclassification in nominal and ordinal categorical data

A simple misclassification distance metric for nominal categorical data–without consideration
of ordinality–is simply the number of values in one data set that must be moved from one
category to another to make the distributions of observations identical in both data sets. This
misclassification metric applies only when both data sets have the same number of total ob-
servations. For such data sets, the misclassification metric is always one-half of the Manhattan
distance metric.

The simple misclassification metric for nominal categorical data can be extended to ordinal
categorical data by incorporating the number of steps between categories that an observation
must be moved. That is, if an observation must be re-classified (moved) from one category to
an adjacent category, that is considered to be a single misclassification error, and to lead to a
misclassification distance of 1. If an observation must be moved from farther away (along the
ordinal scale), then the distance is increased by 1 for each additional step that must be taken.

For some pairs of data sets, there is potentially more than one set of observation reclas-
sifications that could be made to equalize the distributions of the two data sets. These may
result in different distance measures. The stepwise ordinal misclassification distance (SOMD)
should be taken as the minimum number of possible reclassification steps that might be taken.

The SOMD metric, in its simplest form, assumes that all misclassification errors between
adjacent ordinal categories have the same weight. That is, if there are three ordinal categories,
misclassification of an item from category 1 as category 2 has the same weight as a misclassifi-
cation of an item from category 2 as category 3, and further that these weights are symmetrical
(i.e., misclassification from 2 to 1 is equal to misclassification from 1 to 2). However, weights
could be applied in an extended form of this metric if some types of misclassification error are
considered to be more severe, or less likely, than others. For example, if the number of issues
found during a software code review were classified into ordered categories of importance
such as "undocumented", "inefficient", and "logic fault", a misclassification of an "inefficient"
error as a "logic fault" error, or vice-versa, might be given a higher weight than a misclassifi-
cation of an "undocumented" error as an "inefficient" error.
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The difference between the simple misclassification distance and the stepwise misclassi-
fication can be illustrated with the data in Table 2.1. The simple misclassification distance
between these two data sets (instances) is 4: four items must be moved from one category to
another, in either data set, to make the distributions equivalent. The stepwise misclassifica-
tion distance, in contrast, is 8, because each of those four observations must be moved by two
steps, where each step represents a separate misclassification or error.

Table 2.1: Example ordinal data
Instance Category 1 Category 2 Category 3

1 8 8 8
2 4 8 12

3 Comparison to categorical distance metrics

The SOMD metric will always be equal to or greater than the simple misclassification distance.
When no observation is misclassified by more than a single category, these distance measures
will be identical. However, as the previous example illustrates, when any observation must
be moved by more than a single category to equalize the two distributions, the SOMD will be
greater than the simple misclassification distance.

Although the simple misclassification distance has a fixed relationship to the Manhattan
distance (i.e., it is always half, for data sets of equal size), the SOMD index has no fixed
relationship to the Manhattan distance. The SOMD distance may be either greater or less than
the Manhattan distance.

4 Algorithm for calculating the minimum stepwise ordinal misclas-
sification distance metric

Algorithm 1 describes a process for calculating the SOMD metric.
This algorithm uses equal weights for each misclassification step within the ordered set of

categories. If different weights are to be used for different steps, then an n× n matrix should
be used to specify the weights for different step sizes. The appropriate weight for values of i
and j should be obtained from this matrix and used to update the distance measure on lines
8 and 17. If this matrix is not symmetric about the diagonal, then SOMD is no longer a metric
because it is no longer necessarily symmetric (i.e., distSOMD(A, B) , distSOMD(B, A)) nor does
it adhere to the triangle inequality.
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Algorithm 1 Stepwise ordinal misclassification distance (SOMD)
Require: n is the number of categories
Require: A, B are vectors of counts in n categories
Require: ∑n

i=1 A = ∑n
i=1 B

Ensure: d = SOMD between A and B
1: d← 0
2: for i← 1 to n do
3: if i > 1 and A[i] < B[i] then
4: for j← 1 to i− 1 do
5: while A[j] > B[j] and A[i] < B[i] do
6: A[i]← A[i] + 1
7: A[j]← A[j]− 1
8: d← d + (i− j)
9: end while

10: end for
11: end if
12: while A[i] < B[i] do
13: for j← i + 1 to n do
14: while A[j] > B[j] and A[i] < B[i] do
15: A[i]← A[i] + 1
16: A[j]← A[j]− 1
17: d← d + (j− i)
18: end while
19: end for
20: end while
21: end for
22: return d
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5 Conclusion

A new distance metric for ordinal integer data is presented. This metric is conceptually
related to distance metrics such as the Manhattan distance, but incorporates information on
the ordered nature of the data. This stepwise ordinal misclassification distance metric can be
regarded as a measure of the process by which one data set may be transformed into another,
not simply of the result of such a transformation.

A constraint of this method is that it is applicable only to equally sized groups. With
this constraint, this method is applicable to matched-pairs data sets such as are produced by
before/after studies. Other experimental or observational studies with equally sized groups
can also make use of this method.

The provided algorithm is straightforward and allows this metric to be incorporated into
data analyses such as classification and clustering methods. Modification of the algorithm
to incorporate symmetrical or asymmetrical weighting of misclassification errors is also de-
scribed, for other potential uses of this method.
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