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Abstract. In this paper, we study the existence of periodic solutions for the following
piecewise third order differential equation

...
x + ẋ − ε

2

∑
i=1

ci|x|i = 0,

with ε a real parameter sufficiently small, c1 and c2 real numbers. By applying new
results from the averaging theory for continuous differential systems, we prove the
existence of at most one periodic solution for the differential equation. An example is
given to illustrate the established result.
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1 Introduction and main results

As far as we know, the study of piecewise vector fields goes back to Andronov, Vitt, and
Khaikin [1] and still continues to receive strong attention from researchers. Since piecewise
vector fields are widely used to model processes appearing in electronics, mechanics, eco-
nomics, etc., there has been a strong interest in the mathematical community working in
differential equations to understand the dynamical richness of these vector fields. For exam-
ples, see the book [8], the survey of [7], and the hundreds of references cited in these last three
works.

For studying some electrical circuits, Sprott [9,10], and Sun and Sprott [11] considered the
third order differential equation

...
x + bẍ + ẋ − g(x) = 0 (1.1)

with b a real number and g(x) is an elementary piecewise function. The authors in [9–11]
showed that some of these equations exhibit chaos.
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Llibre et al in [5] by using the averaging method of first order investigate the periodic
solutions of the differential equation (1.1) with b = −ε and g(x) = −εaxm where a, m are
parameters and ε is a nonzero real parameter sufficiently small. In other words, they study
the existence of periodic solutions of the following differential equation

...
x − ε|ẍ|+ ẋ + εaxm = 0, (1.2)

and obtain that for m is even and a > 0 then system (1.2) has a periodic solution. However in
all other cases of the parameter a and the exponent m the averaging theory of first order does
not provide any information on the periodic solutions of system (1.2).

In this paper, we consider the differential equation (1.1) with b = 0 and g(x) = ε
2
∑

i=1
ci|x|i.

In other words we consider the following differential equation

...
x + ẋ − ε

2

∑
i=1

ci|x|i = 0, (x(0), ẋ(0), ẍ(0)) = (x0, ẋ0, ẍ0), (1.3)

where ε is a nonzero real parameter sufficiently small and c1 and c2 are nonzero real numbers.
Here we are interested in knowing how the parameters c1 and c2 affect the periodic solutions
of this problem.

Using the change of variable ẋ = y, ẏ = z, the differential equation (1.3) can be written as

ẋ = y,
ẏ = z,

ż = −y + ε
2

∑
i=1

ci|x|i,
(1.4)

with (x(0), y(0), z(0)) = (x0, y0, z0) and the dot denotes the derivative with respect to the
variable t (i.e. ˙ := d

dt ).
We note that the existence of the term |x| makes the differential system (1.4) only continu-

ous, consequently, we are unable to apply the classical averaging theory to it in order to study
its periodic solutions since that theory needs the differential system to be of class C2. The
averaging theory has recently been extended to encompass the only continuous differential
systems, for more details, see Section 2.

Using the first order averaging method, we obtain the following main result.

Theorem 1.1. For | ε |, 0 a real parameter sufficiently small, x0 and r0 are the initial conditions of
the problem (1.4). The following statements hold.

(a) If c1 and c2 have different signs, then the differential equation (1.4) has a periodic solution.

(b) If c1 and c2 have the same signs and
∣∣∣ x0+r0

r0

∣∣∣ < 1 with r2
0 = y2

0 + z2
0, then the averaging method

of first order does not provide any information on the periodic solutions of (1.4).

Remark 1.2. If either c1 = 0 or c2 = 0, then the averaging method of first order does not
provide periodic solutions.

This paper is organized as follows: Theorem 1.1 is proved in section 3. Their proof is
based on the first order averaging theory, see Theorem 2.1 in section 2. An example is given
in section 4 to illustrate the established results.
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2 Averaging method for continuous differential systems

For proving Theorem 1.1 we apply the recent result from the averaging theory for the con-
tinuous piecewise linear differential systems. In this section we present this result and some
necessary remarks for their applications. From Theorem B of [6] we get the following re-
sult adapted to the next system (2.1). See also Theorems 11.5 and 11.6 of Verhulst [12]. The
following theorem can be applied to general nonsmooth differential systems.

Theorem 2.1. consider the following differential system

ẋ = F0(t, x) + εF1(t, x) + ε2R(t, x, ε), (2.1)

where ε , 0 is a small parameter, D ⊂ Rn is an open subset, the functions Fi(t, x) : R × D → Rn

for i = 1, 2 and R(t, x, ε) : R × D × (−ε0, ε0) → Rn are T−periodic functions in the variable t, and
for each t ∈ R, the functions F0(t, .) ∈ C1, F1(t, .) ∈ C0, DxF0 and R ∈ C0 are locally Lipschitz in
the second variable x. We denote by x(t, z, ε) the solution of system (2.1), such that x(0, z, ε) = z.
Assume that there exists an open and bounded subset V of D with its closure V̄ ⊂ D, such that for
each z ∈ V̄, the solution x(t, z, 0) is T periodic. We denote by Mz(t) the fundamental matrix solution
of the variational equation:

ẋ(t) = DxF0(t, x(t, z, 0)),

associated with the periodic solution x(t, z, 0), such that Mz(0) is the identity.
If a ∈ V is a zero of the map F : V̄ → Rn defined by

F (z) =
T∫

0

M−1
0 (t)F1(t, x(t, z))dt,

and det(DzF (a)) , 0, then for ε > 0 sufficiently small, system (2.1) has a T periodic solution
x(t, aε, ε), such that aε → a as ε → 0. Moreover, the linear stability type of the periodic solution
x(t, aε, ε) is given by the eigenvalues of the matrix DzF (a).

The averaging theory is one of the best methods for obtaining analytically periodic solu-
tions of the differential equations, see for instance [3–5] and the references therein.

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by using the first order averaging method for
continuous differential systems which is presented in Theorem 2.1.
Proof of statement (a) of Theorem 1.1

In order to apply the averaging method of first order, we should transform system (1.4)
into the standard form (2.1). In cylindrical coordinates x = x, y = r sin θ and z = r cos θ, the
system (2.1) becomes

ẋ = r sin θ,

ṙ = ε cos θ
2

∑
i=1

ci|x|i,

θ̇ = 1 − ε

r
sin θ

2

∑
i=1

ci|x|i.

(3.1)
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Taking θ as the new independent variable, we can write the previous differential system as

x
′
= r sin θ + ε sin2 θ

2

∑
i=1

ci|x|i + o(ε2),

r
′
= ε cos θ

2

∑
i=1

ci|x|i + o(ε2),
(3.2)

with
′

:= d
dθ . The unperturbed system is

x
′
= r sin θ,

r
′
= 0.

(3.3)

The solution of system (3.3) is given by (x(θ, x0, r0), r(θ, x0, r0)) = (x0 + r0(1 − cos θ), r0), with
(x(0, x0, r0), r(0, x0, r0)) = (x0, r0). It is clear that the solution of system (3.3) is 2π periodic for
all (x0, r0) , (0, 0). If r0 = 0 we have a straight line of equilibrium points.

Now, note that the function F0(θ, (x, r)) = (r sin θ, 0) is C1 and that the function F1(θ, (x, r)) =
2

∑
i=1

ci|x|i(sin2 θ, cos θ) is C0, and both are Lipschitz. Therefore, system (3.1) satisfies the as-

sumptions of Theorem 2.1. Then, by Theorem 2.1, we need to compute the averaged function

F (z) =
T∫

0

M−1
0 (t)F1(t, x(t, z))dt,

where

M0(θ) =

(
1 1 − cos θ

0 1

)
, (3.4)

is the fundamental matrix of the variational differential system associated with system (3.3)
evaluated on the periodic solution (x0 + r0(1− cos θ), r0), such that M(θ) is the identity matrix.
Therefore, we have

F (x0, r0) =

2π∫
0

2

∑
i=1

ci|x0 + r0(1 − cos θ)|i
(

1 1 − cos θ

0 1

)(
sin2 θ

cos θ

)
dθ

=

2π∫
0

2

∑
i=1

ci|x0 + r0(1 − cos θ)|i
(

1 − cos θ

cos θ

)
dθ

=

2π∫
0

f (θ)dθ,

and considering the change of variable θ = ϕ + π in the interval [0, 2π] and the symmetry
cos (θ + π) = − cos θ, we have that

F (x0, r0) = 2
π∫

0

f (θ)dθ.

To calculate the explicit form of F (x0, r0), we should study the zeros of x0 + r0(1 − cos θ). So
x0 + r0(1 − cos θ) = 0 if and only if θ = ± arccos

(
x0+r0

r0

)
and the function arccos x takes real
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value when x ∈ [−1, 1]. Now, we must consider the following three cases.
Case 1 x0+r0

r0
≤ −1, then x0 + r0(1 − cos θ) ≤ 0 in [0, π].

Case 2
∣∣∣ x0+r0

r0

∣∣∣ < 1, then x0 + r0(1− cos θ) < 0 if θ ∈ (0, arccos( x0+r0
r0

)) and x0 + r0(1− cos θ) >

0 if θ ∈ (arccos( x0+r0
r0

), π).
Case 3 x0+r0

r0
≥ 1, then x0 + r0(1 − cos θ) ≥ 0 in [0, π].

So, the explicit form of F (x0, r0) depends on the three previous cases.

Case 1 The averaged function is

F (x0, r0) = 2
π∫

0

2

∑
i=1

ci(−(x0 + r0(1 − cos θ))i
(

1 − cos θ

cos θ

)
dθ

= π
((

5 r0
2 + 6 r0x0 + 2 x0

2) c2 − 3 c1 (r0 + 2/3 x0) ,−2 r0 ((r0 + x0) c2 − 1/2 c1)
)

.

In order to determine the existence of periodic solutions for system (1.4), we should solve the
system (

5 r0
2 + 6 r0x0 + 2 x0

2) c2 − 3 c1 (r0 + 2/3 x0) = 0, (3.5)

−2 r0 ((r0 + x0) c2 − 1/2 c1) = 0. (3.6)

From (3.6), we get x0 = c1
2c2

− r0. Now by substituting in (3.5), we obtain

−−2 r0
2c2

2 + c1
2

2c2
= 0. (3.7)

Solving this equation in the variable r0 and since r0 must be positive, we get

±r∗0 = ± c1√
2c2

.

Then
−x∗0 =

(√
2 + 1

) c1

2c2
, +x∗0 = −

(√
2 − 1

) c1

2c2
.

Note that c1 and c2 have different signs ensure the existence of solution −r∗0 = − c1√
2c2

and if
c1 and c2 have same sign then the equation (3.7) has one real positive solution +r∗0 = c1√

2c2
.

In summary, for c1 and c2 are nonzero real numbers, the averaged function F (x0, r0) has
the unique zero either (−x∗0 , −r∗0) or (+x∗0 , +r∗0).
In addition we have

det(DF (±x∗0 ,± r∗0)) = 2(c1π)2.

Hence, the assumptions of Theorem 2.1 are verified for the continuous differential system
(4.3).
From Theorem 2.1, it follows that system (4.3) has the periodic solution

x(θ, ε) = ±x∗0 + o(ε), r(θ, ε) = ±r∗0 + o(ε).

Moreover, the eigenvalues of the Jacobian matrix of the map ( f1, f2) evaluated at the solution
(±x0, ±r0) are ±iπ

√
2c1, so the periodic solution is linearly stable.
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Going back through the change of cylindrical coordinates, system (1.4) has the periodic
solution

x(t, ε) = −x∗0 + o(ε),

y(t, ε) = −r∗0 sin t + o(ε),

z(t, ε) = −r∗0 cos t + o(ε).

with c1 and c2 have a different sign, or

x(t, ε) = +x∗0 + o(ε),

y(t, ε) = +r∗0 sin t + o(ε),

z(t, ε) = +r∗0 cos t + o(ε).

with c1 and c2 have the same sign.
Case 3 Similar to Case 1, we have

F (x0, r0) = π(
(
5 r0

2 + 6 r0x0 + 2 x0
2) c2 + 3 c1 (r0 + 2/3 x0) ,−2 ((r0 + x0) c2 + 1/2 c1) r0).

Analogously to Case 1, we obtain that system (1.4) has the periodic solution

x(t, ε) = +x∗0 + o(ε),

y(t, ε) = −r∗0 sin t + o(ε),

z(t, ε) = −r∗0 cos t + o(ε),

with c1 and c2 have a different sign, or

x(t, ε) = −x∗0 + o(ε),

y(t, ε) = +r∗0 sin t + o(ε),

z(t, ε) = +r∗0 cos t + o(ε),

with c1 and c2 have the same sign.
Case 2 The averaged function is

F (x0, r0) = 2
π∫

0

2

∑
i=1

ci|x0 + r0(1 − cos θ)|i
(

1 − cos θ

cos θ

)
dθ

=

(
f1(x0, r0)

f2(x0, r0)

)
,

with

f1(x0, r0) =

π∫
0

(1 − cos θ)
2

∑
i=1

ci|x0 + r0(1 − cos θ)|idθ

=

arccos
(

x0+r0
r0

)∫
0

(1 − cos θ)
2

∑
i=1

ci(−(x0 + r0(1 − cos θ))idθ

+

π∫
arccos

(
x0+r0

r0

) (1 − cos θ)
2

∑
i=1

ci(x0 + r0(1 − cos θ)idθ,

(3.8)
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and

f1(x0, r0) =

π∫
0

cos θ
2

∑
i=1

ci|x0 + r0(1 − cos θ)|idθ

=

arccos
(

x0+r0
r0

)∫
0

cos θ
2

∑
i=1

ci(−(x0 + r0(1 − cos θ))idθ

+

π∫
arccos

(
x0+r0

r0

) cos θ
2

∑
i=1

ci(x0 + r0(1 − cos θ)idθ.

(3.9)

Using this equality arccos θ + arcsin θ = π/2 and taking x0 = −r0 + Xr0, we get

f1(x0, r0) = 2 r0

(
c1 (X + 2)

√
−X2 + 1 + c1 (2 X + 1) arcsin (X) + c2r0π

(
X2 + X + 1/2

))
,

f2(x0, r0) = r0

(
−2 c1X

√
−X2 + 1 − 2 π Xc2r0 − 2 c1 arcsin (X)

)
.

Now, we should solve the system f1(x0, r0) = 0, f2(x0, r0) = 0. From the second equation,
it follows that X = 0, and from the first equation that r∗0 = − 4c1

π c2
. Therefore, we have the

solution (x0, r0) =
(

4c1
π c2

,− 4c1
π c2

)
. Since r0 must be positive, then c1 and c2 must have different

sign. The Jacobian of the map ( f1, f2) evaluated at (x0, r0) =
(

4c1
π c2

, −4c1
π c2

)
is 16c2

1. It follows
from Theorem 2.1 and for ε a non-zero real parameter sufficiently small that system (4.3) has
a periodic solution ϕ(θ, ε) = (x(θ, ε), r(θ, ε)) =

(
4c1
π c2

+ o(ε),− 4c1
π c2

+ o(ε)
)

. In addition, the

eigenvalues of the Jacobian matrix of the map ( f1, f2) evaluated at the solution
(

4c1
π c2

, −4c1
π c2

)
are ±4c1, so the periodic solution is linearly stable.

Now we must identify the periodic solution of system (1.4) which corresponds to the
periodic solution found. Going back to system (1.4) with the independent variable t, we
obtain the periodic solution:

(
x(t, ε), y(t, ε), z(t, ε)

)
=

(
4c1

π c2
,− 4c1

π c2
cos t,− 4c1

π c2
sin t

)
+ o(ε).

This completes the Proof the statement (a) of Theorem 1.1.

Proof of statement (b) of Theorem 1.1
If
∣∣∣ x0+r0

r0

∣∣∣ < 1, then the unique zero of the averaged function F (x0, r0) is (x0, r0) =
(

4c1
π c2

,− 4c1
π c2

)
.

So for c1 and c2 have the same sign, then r0 < 0. Because of r0 must be positive, then the av-
eraged function F (x0, r0) has no zero in this case. This completes the Proof the statement (b)
of Theorem 1.1.

4 Example

In this section, we provide an application of Theorem 1.
Consider the perturbed system

ẋ = y,
ẏ = z,
ż = −y + ε

(
−πc2/4|x|+ c2x2),

(4.1)
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Figure 4.1: The periodic orbit of the differential system (4.1) with c2 = 1 and ε = 10−4 using
the initial conditions x0 = −0.25, y0 = −z0 = 0.7.

with ε a nonzero real parameter sufficiently small, c2 a nonzero real number.

System (4.1) in the previous cylindrical coordinates can be written as

ẋ = r sin θ,
ṙ = εc2 cos θ

(
− π/4|x|+ x2),

θ̇ = 1 − εc2

r
sin θ

(
− π/4|x|+ x2).

(4.2)

Taking θ as a new independent variable, system (4.2) is equivalent with the following system

x
′
= r sin θ + εc2 sin2 θ

(
− π/4|x|+ x2)+ o(ε2),

r
′
= εc2 cos θ

(
− π/4|x|+ x2)+ o(ε2),

(4.3)

The unperturbed system and the fundamental matrix associated with it are given in (3.4) and
(3.3), respectively. For system (4.1) and by taking x0 = −r0 + r0X, the averaged function is
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given by

F (x0, r0) =
πc2

4
r0
(

f1(x0, r0), f2(x0, r0)
)
,

with

f1(x0, r0) = 4 r0
(
2 X2 + 2 X + 1

)
− 2 (X + 2)

√
−X2 + 1 − 2 (2 X + 1) arcsin (X) ,

f2(x0, r0) = 2 X
√
−X2 + 1 − 8 Xr0 + 2 arcsin (X) .

It is clearly that X = 0 is the only solution of the equation f2(X, r0) = 0. Substituting in
f1(X, r0) = 0, we obtain

π c2r0 (−1 + r0) .

As consequence, the f1(x0, r0) only vanishes at r0 = 1. So the unique zero of the averaged
function F (x0, r0) is (−1, 1). Moreover, the Jacobian matrix of F (x0, r0) evaluated at the zero
(−1, 1) is

πc2

(
1 2
−1 −1

)
,

and its determinant is (πc2)2. Thus from Theorem 2.1, system(4.1) has the periodic solution
(see Figure 4.1).

x(t, ε) = −1 + o(ε),
y(t, ε) = cos θ + o(ε),
z(t, ε) = sin θ + o(ε).

Also we have that the eigenvalues of Jacobian matrix of F (x0, r0) are ±iπc2. As a result this
periodic solution is linearly stable.
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