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Abstract. Many times, in a variance exchange process for identifying D-optimal designs,
the initial designs of all quadratic components of three-variable response polynomials
yield non-invertible information matrices. For such matrices, the variances of predicted
responses at the design points cannot be evaluated, making the variance exchange process
impossible. D-optimality is a design criterion that seeks to maximize the determinant of
the information matrix, or equivalently, minimize the determinant of the inverse informa-
tion matrix of the design. This work addresses the challenges posed by initial quadratic
designs with zero-determinant information matrices for three-variable response polyno-
mials, enabling the possibility of variance exchange.

The singular value decomposition (SVD) method was adopted, and an algorithm was
developed for a variance exchange process involving quadratic designs of three-variable
response functions. The study analyzed generated data for quadratic three-variable de-
signs of sizes 12 and 13. MATLAB 7.5.0 (R2007b) was used to compute the Penrose
inverses.

The results demonstrate that a variance exchange process is feasible, allowing the
evaluation of the variances of predicted responses at the design points and overcoming
the issue of singular information matrices in the initial quadratic designs.

The D-optimal designs, or computer-generated optimal designs, offer practical alter-
natives for determining optimal conditions for factors in engineering optimization prob-
lems. These designs are particularly useful for response surface functions requiring struc-
tured data collection through experimental design when the experimental design space
is constrained due to the zero determinant of the information matrices in the initial de-
signs.

Keywords: Variance Exchange Process, Three-variable Quadratic Designs, Singular
Information Matrix, Generalized Inverse.).
2020 Mathematics Subject Classification: 62K05, 62L05, 62R01. MSC2020

BCorresponding author. Email: okimikpan@unicross.edu.ng

https://doi.org/10.58205/jiamcs.v4i2.1847
http://jiamcs.centre-univ-mila.dz/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.centre-univ-mila.dz/?lang=en
https://orcid.org/0009-0007-7018-6014
https://orcid.org/0000-0002-3536-1725
https://mathscinet.ams.org/msc/msc2020.html


176 O. Ikpan and F. Nwobi

1 Introduction

The variance exchange process, an algorithmic search procedure for constructing exact D-
optimum designs as described in [4] and [9], depends on the variance of the predicted re-
sponses at the design points x′i M

−1{ξN}xi, the determinant detM(ξN) of the design’s infor-
mation matrix, and the values of the elements of its inverse M−1(ξN).

The inverse of a design matrix is defined only for square, nonsingular matrices. A common
situation in statistics, as well as in many other fields of application, involves solving a system
of linear equations, such as in Equation (1.1) [11]:

Ax = c. (1.1)

In Equation (1.1), A is an m × n matrix of constants, c is an m × 1 vector of constants, and
x is an n × 1 vector of variables for which solutions are sought. Such solutions are possible
only if m = n and A is nonsingular, in which case the inverse A−1 exists. The system in
Equation (1.1) is satisfied only when x = A−1c, resulting in a unique solution. Here, A is said
to be of full rank. If, however, A is not of full rank and A−1 does not exist, the system in
Equation (1.1) has no solution.

The variance exchange process can only proceed when the information matrix of a de-
sign is nonsingular, i.e., M{ξN} = X′X is of full rank, and the predicted variances of the
design points, x′i M

−1{ξN}xi, can be computed. This dependency arises because the rank of a
matrix determines its invertibility: a matrix with less-than-full rank is not invertible, and its
determinant is zero.

In the case of a three-variable response function, the initial designs for all quadratic com-
ponents are of less-than-full rank and consequently produce singular information matrices,
M(ξ

(1)
N ). Specifically, r{X′X} < c, where c is the number of columns, and x′i M

−1{ξN}xi can-
not be evaluated. As a result, the variance exchange process is not feasible when the degree
of the three-variable response function includes quadratic terms.

[1] has noted that, in a variance exchange process, if a design matrix ξN or its informa-
tion matrix M(ξN) = (X′X) has a zero determinant, the inverse information matrix cannot
be computed. Furthermore, [3] observed that while good starting designs might be available,
they do not necessarily guarantee designs with maximum determinants. Similarly, [6] and [2]
pointed out that starting designs can sometimes be singular. In their work, "On the Difference
in Cycling Pattern on Linear and Higher-Order Effect Designs," [10] found that starting de-
signs for all quadratic components of three-variable second-order polynomials have singular
information matrices, thus preventing a variance exchange process.

In this study, we address the challenges posed by zero-determinant information matrices
in initial quadratic designs for a three-variable response polynomial function. Our primary
aim is to compute a unique Penrose inverse G = (X′X)+ for the singular quadratic infor-
mation matrix (X′X), evaluate the predicted response variances x′i(X′X)+xi at design points,
and construct an algorithm to enable the variance exchange process for initial designs with
singular information matrices.

2 Materials and methods

In a variance exchange process, the variance of predicted responses at design points,
x′i M

−1{ξN}xi, can only be evaluated for nonsingular information matrices. The information
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matrix, M{ξN}, for a quadratic three-variable design is singular. To assess these variances
of predicted responses, a generalized inverse (X′X)− is required. However, several different
generalized inverses of M{ξN} exist, meaning (X′X)− is not unique. To address this, we
adopt the Moore-Penrose inverse, a unique pseudoinverse for singular information matrices,
as outlined by [12] and [13], to assess the predicted variances. Using this pseudoinverse, we
constructed an algorithm to overcome the problem of zero determinants, ultimately making
the variance exchange process workable for a three-variable quadratic information matrix.

2.1 The Moore-Penrose inverse

Let ξ
(1)
N be an initial N-point design measure, and let X be the corresponding design matrix.

Then, according to [11] and [12], the Moore-Penrose inverse is defined as follows:

Definition 2.1. The Moore-Penrose inverse of X, denoted by X+, satisfies the conditions:

X(X+)X = X, (2.1)

(X+)X(X+) = X+, (2.2)

[X(X+)]′ = X(X+), (2.3)

[(X+)X]′ = (X+)X. (2.4)

The pseudoinverse, as described by [13], provides a "best fit" solution for non-square or
singular matrices that do not have a standard inverse. According to [11], it is a generalization
of spectral factorization to non-symmetric matrices, known as the singular value decomposi-
tion (SVD), defined as:

Definition 2.2. If X = RΣS′ is the singular value decomposition of the N-point design matrix
X, then its pseudoinverse is given by X+ = SΣ−1R′.

For theoretical purposes, [7], as cited by [12], provided an expression to compute the
Moore-Penrose inverse of a partitioned m × n matrix X recursively. Let Xi = (x1, ..., xi), where
xi denotes the i-th column of X, so that Xi is the m × i matrix containing the first i columns of
X. Greville showed that if we write Xi = [Xi−1 xi] (i = 2, . . . , n), then:

X+
i = [Xi−1 xi]

+ =

[
X+

i−1 − dib′i
b′i

]
, (2.5)

where:

b′i =

{
(c′ici)

−1 c′i, if ci , 0,

(1 + d′idi)
−1 d′iX

+
i−1, if ci = 0,

and the vectors di and ci are defined as:

di = X+
i−1xi,

ci = xi − Xi−1di = xi − Ai−1X+
i−1xi.

Thus, X+ = X+
n can be computed successively by calculating X+

2 , X+
3 , ..., X+

n .
Stanimirovic [14] proposed an algorithm based on Equation (2.5) for computing the

Moore-Penrose inverse as follows:
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Start: For an arbitrary m × n matrix X, compute:

X+
1 = x+1 =

{
(x′1x1)

−1 x′1, x1 , 0,

0, x1 = 0.

For i = 2 to n, do:

di := X+
i−1xi,

ci := xi − Xi−1di.

If ci , 0, compute:
b′i :=

(
c′ici

)−1 c′i.

Otherwise:
b′i :=

(
1 + d′idi

)−1 d′iX
+
i−1.

Then:

X+
i =

[
X+

i−1 − dib′i
b′i

]
.

Repeat until X+ = X+
n .

2.2 Algorithm to overcome information matrix singularities in a quadratic level
variance exchange process for a three-variable design

Given an initial N-point design matrix X = ξ
(1)
N from a candidate set Ñ obtained from a metric

space of factor levels X̃, a variance exchange is possible if the matrix M(ξ
(1)
N ) is nonsingular

and invertible for linear, mixed, and quadratic portions of the three-variable response situation
[9].

For an initial quadratic component three-variable singular and noninvertible information
matrix M(ξ

(1)
N ), the structure of the variance exchange process is defined by the following

iterative steps:

(I) Determine the Moore-Penrose generalized inverse of the singular information matrix
M(ξ

(1)
N ).

(II) Compute the variances d
(

xv, ξ
(1)
N

)
for points within the design ξ

(1)
N and d

(
xw, ξ

(1)
N

)
for

points in the complement design ξ
(1)c
N :

d
(

xv, ξ
(1)
N

)
= min

x∈X(1)
N

x′i(X′X)+xi, (2.6)

d
(

xw, ξ
(1)
N

)
= max

x∈X(1)c
N

x′j(X′X)+xj. (2.7)

(III) Compare Equations (2.6) and (2.7), the minimum and maximum variances of the design
and its complement.

If d
(

xw, ξ
(1)
N

)
≤ d

(
xv, ξ

(1)
N

)
, stop. Otherwise, exchange the point with the minimum

variance in ξ
(1)
N with the point with the maximum variance from ξ

(1)c
N , the complement

design. Define a new design measure and repeat step (II) until d
(

xw, ξ
(k)
N

)
≤ d

(
xv, ξ

(k)
N

)
.
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Figure 2.1: Flowchart describing the algorithm.

Figure 2.1 provides a flowchart illustrating the stated algorithm.
The algorithm terminates when no further exchange increases the determinant, indicating

that the determinant of the information matrix is at its maximum. That is,∣∣∣M (
ξ
(k)
X

)∣∣∣ = ∣∣∣M (
ξ
(⋆)
X

)∣∣∣,
where ξ

(⋆)
X is the desired exact D-optimal design measure.

However, this procedure may not always converge to the best exact D-optimal design
due to what [8] describes as cycling. When cycling occurs in the sequential process, the
determinant of the information matrix stagnates, leading to:

d
(

xw, ξ
(k)
N

)
> d

(
xv, ξ

(k−1)
N

)
and

∣∣∣M (
ξ
(k)
N

)∣∣∣ ≤ ∣∣∣M (
ξ
(k−1)
N

)∣∣∣.
The effects of cycling include:
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(i) The absence of a defined maximum determinant.

(ii) Failure to converge to D-optimality:

M
(

ξ
(1)
N

)
≤ M

(
ξ
(2)
N

)
≤ · · · ≤ M

(
ξ
(k)
N

)
≤ · · · ≤ M

(
ξ
(⋆)
N

)
.

3 Analysis and results

The statistical analysis employs the model in Equation (3.1), a three-variable quadratic re-
sponse polynomial function. Both even- and odd-sized designs are considered to evaluate the
impact of zero determinants on designs. Specifically, designs of sizes 12 and 13 are analyzed.

f (x1, x2, x3) = a0 +
3

∑
i=1

aixi +
3

∑
i=1

aiix2
i + ∑

i<j
∑ aijxixj + e, (3.1)

where a0 is the intercept, ai are the linear coefficients, aii are the quadratic coefficients, aij are
the interaction coefficients, and e represents the error term.

The experimental space used to generate data for designs of sizes 12 and 13 points is
defined as:

X̃ = {x1, x2, x3 : x1 = −2,−1, 1, 2; x2 = −1, 0, 1; x3 = −1, 1},

with E(e) = 0 and Var(e) = σ2
e .

3.1 The three-variable, quadratic 12-point designs

The initial and complement design matrices for the three-variable quadratic 12-point design
are as follows:

X(1)
12 =



1 −2 −1 −1 4 1 1 2 2 1
1 −2 0 1 4 0 1 0 −2 0
1 −2 1 −1 4 1 1 −2 2 −1
1 −1 −1 1 1 1 1 1 −1 −1
1 −1 0 1 1 0 1 0 −1 0
1 −1 1 −1 1 1 1 −1 1 −1
1 1 0 −1 1 0 1 0 −1 0
1 1 0 1 1 0 1 0 1 0
1 1 1 −1 1 1 1 1 −1 −1
1 2 −1 −1 4 1 1 −2 2 1
1 2 0 −1 4 0 1 0 −2 0
1 2 0 1 4 0 1 0 2 0


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X(1)c
12 =



1 −2 −1 1 4 1 1 2 −2 −1
1 −2 0 −1 4 0 1 0 2 0
1 −2 1 1 4 1 1 −2 −2 1
1 −1 −1 −1 1 1 1 1 1 1
1 −1 0 −1 1 0 1 0 1 0
1 −1 1 1 1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 −1 −1 1
1 1 −1 1 1 1 1 −1 1 −1
1 1 1 1 1 1 1 1 1 1
1 2 −1 1 4 1 1 −2 2 −1
1 2 1 −1 4 1 1 2 −2 −1
1 2 1 1 4 1 1 2 2 1


The information matrix and its determinant are given as:

M
{

ξ
(1)
12

}
=



12 0 0 −2 30 6 12 −1 −2 −2
0 30 −1 −2 0 −3 0 −3 −8 3
0 −1 6 −2 −3 0 0 −3 3 −4
−2 −2 −2 12 −8 −4 −2 3 0 0
30 0 −3 −8 102 15 30 −7 −2 1
6 −3 0 −4 15 6 6 −1 1 −2
12 0 0 −2 30 6 12 −1 −2 −2
−1 −3 −3 3 −7 −1 −1 15 1 1
−2 −8 3 0 −2 1 −2 1 30 −1
−2 3 −4 0 1 −2 −2 1 −1 6


Det

{
M

(
ξ
(1)
12

)}
= 0

Since the determinant is zero, the 10 × 10 information matrix M(ξ
(1)
12 ) is singular and non-

invertible. Consequently, the variances of the predicted responses, x′i M
−1{ξ

(1)
12 }xi, cannot be

evaluated directly.
To address this, we employ singular value decomposition (SVD) to determine the Moore-

Penrose pseudoinverse of M(ξ
(1)
12 ), enabling the computation of variances x′i M

−1{ξ
(1)
12 }xi.

MATLAB 7.5.0 (R200b) provides the SVD of M(ξ
(1)
12 ) as:

svd
{

M
(

ξ
(1)
12

)}
=



124.4755
39.0867
23.1874
17.0400
11.0782
10.1217
3.8464
1.6959
0.4683
0.0000


The [U, Σ, V] = svd

{
M

(
ξ
(1)
12

)}
gives:
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U =



−0.280 0.004 −0.066 −0.004 0.238 −0.294 −0.276 0.434 0.097 0.707
−0.002 0.709 0.619 0.236 0.141 −0.158 −0.027 −0.103 −0.038 0.000
0.020 −0.082 0.139 −0.356 0.192 −0.310 0.622 0.229 −0.524 0.000
0.081 −0.037 −0.199 0.406 −0.523 −0.653 −0.074 −0.116 −0.264 0.000
−0.900 −0.024 0.034 0.115 −0.200 0.117 0.281 −0.207 0.000 0.000
−0.145 −0.093 −0.028 −0.152 0.306 0.044 −0.526 −0.432 −0.622 0.000
−0.280 0.004 −0.066 −0.004 0.238 −0.294 −0.276 0.434 0.097 −0.707
0.066 −0.097 −0.271 0.701 0.575 0.075 0.278 −0.066 −0.062 0.000
0.018 −0.679 0.687 0.224 −0.004 −0.045 −0.095 0.031 0.063 0.000
0.004 0.096 0.041 0.276 −0.302 0.507 −0.112 0.558 −0.491 0.000


,

Σ =



124.476 0 0 0 0 0 0 0 0 0
0 39.087 0 0 0 0 0 0 0 0
0 0 23.187 0 0 0 0 0 0 0
0 0 0 17.040 0 0 0 0 0 0
0 0 0 0 11.078 0 0 0 0 0
0 0 0 0 0 10.122 0 0 0 0
0 0 0 0 0 0 3.846 0 0 0
0 0 0 0 0 0 0 1.696 0 0
0 0 0 0 0 0 0 0 0.468 0
0 0 0 0 0 0 0 0 0 0.000


.

V =



−0.280 0.004 −0.066 −0.004 0.238 −0.294 −0.276 0.434 0.097 0.707
−0.002 0.709 0.619 0.236 0.141 −0.156 −0.027 −0.103 −0.038 0.000
0.020 −0.082 0.139 −0.356 0.192 −0.310 0.622 0.229 −0.524 0.000
0.081 −0.037 −0.198 0.406 −0.523 −0.653 −0.074 −0.116 −0.264 0.000
−0.900 −0.024 0.034 0.115 −0.200 0.117 0.281 −0.207 0.000 0.000
−0.145 −0.093 −0.028 −0.152 0.306 0.044 −0.526 −0.432 −0.622 0.000
−0.280 0.004 −0.066 −0.004 0.238 −0.294 −0.276 0.434 0.097 −0.707
0.066 −0.097 −0.271 0.701 0.575 0.075 0.278 −0.066 −0.062 0.000
0.031 −0.679 0.687 0.224 −0.004 −0.045 −0.095 0.031 0.063 −0.000
0.004 0.096 0.041 0.276 −0.302 0.507 −0.112 0.558 −0.491 0.000


.

From these results, it is established that:

(i) M
(

ξ
(1)
12

)
= UΣV ′,

(ii) The Penrose inverse of (X′X), (X′X)+ = VΣ−1U′.

The variances evaluated from x′i (X′X)+ xi are shown in Table 3.1.

3.2 The three-variable, quadratic 13-point designs

The initial and complement design matrices for the three-variable quadratic 13-point design
are as follows:
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Table 3.1: Variances of points for the initial two-variable linear 12-point designs

Vector
Current Design Complement Design

Vector Point Var Vector Point Var
x1 (1 − 2 − 1 − 1 4 1 1 2 2 1) 0.9950 (1 − 2 − 1 1 4 1 1 2 − 1 − 1) 1.7212
x2 (1 − 2 0 1 4 0 1 0 − 2 1) 1.7804 (1 − 2 0 − 1 4 0 1 0 2 0) 1.5106
x3 (1 − 2 1 − 1 4 1 1 − 2 2 − 1) 0.7738 (1 − 2 1 1 4 1 1 − 2 − 2 1) 6.7847
x4 (1 − 1 − 1 1 1 1 1 1 − 1 − 1) 1.0000 (1 − 1 − 1 − 1 1 1 1 1 1 1) 1.1109
x5 (1 − 1 0 1 1 0 1 0 − 1 0) 0.4807 (1 − 1 0 − 1 1 0 1 0 1 0) 1.2956
x6 (1 − 1 1 − 1 1 1 1 − 1 1 − 1) 0.4440 (1 − 1 1 1 1 1 1 − 1 − 1 1) 6.8866
x7 (1 1 0 − 1 1 0 1 0 − 1 0) 0.6775 (1 1 − 1 − 1 1 1 1 − 1 − 1 1) 1.1825
x8 (1 1 0 1 1 0 1 0 1 0) 0.4897 (1 1 − 1 1 1 1 1 − 11 − 1) 1.7740
x9 (1 1 1 − 1 1 1 1 1 − 1 − 1) 0.9143 (1 1 1 1 1 1 1 1 1 1) 7.1562
x10 (1 2 − 1 − 1 4 1 1 − 2 − 2 1) 0.9950 (1 2 − 1 1 4 1 1 1 − 2 2 − 1) 2.8546
x11 (1 2 0 − 1 4 0 1 0 − 2 0) 0.6775 (1 2 1 − 1 4 1 1 1 2 − 2 − 1) 2.6641
x12 (1 2 0 1 4 0 1 0 2 0) 0.7807 (1 2 1 1 4 1 1 2 1) 7.8704

X(1)
13 =



1 −2 −1 1 4 1 1 2 −2 −1
1 −2 0 −1 4 0 1 0 2 0
1 −1 0 −1 1 0 1 0 1 0
1 −1 1 −1 1 1 1 −1 1 −1
1 −1 1 1 1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 −1 −1 1
1 1 −1 1 1 1 1 −1 1 −1
1 1 0 1 1 0 1 0 1 0
1 2 −1 −1 4 1 1 −2 2 1
1 2 −1 1 4 1 1 −2 2 −1
1 2 0 1 4 0 1 0 2 0
1 2 1 −1 4 1 1 2 −2 −1
1 2 1 1 4 1 1 2 2 1



,

X(1)c
13 =



1 −2 −1 −1 4 1 1 2 2 1
1 −2 0 1 4 0 1 0 −2 0
1 −2 1 −1 4 1 1 −2 2 −1
1 −2 1 1 4 1 1 −2 −2 1
1 −1 −1 −1 1 1 1 1 1 1
1 −1 −1 1 1 1 1 1 −1 −1
1 −1 0 1 1 0 1 0 −1 0
1 1 0 −1 1 0 1 0 −1 0
1 1 1 −1 1 1 1 1 −1 −1
1 1 1 1 1 1 1 1 1 1
1 2 0 −1 4 0 1 0 −2 0



.

The information matrix and its determinant are as follows:
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M
{

ξ
(1)
13

}
=



13 6 −1 1 34 9 13 −2 4 −1
6 34 −2 4 24 6 6 −4 4 2
−1 −2 9 −1 −4 −1 −1 6 2 1
1 4 −1 13 −4 1 1 2 6 −1
34 24 −4 4 118 24 34 4 10 −4
9 6 −1 1 24 9 9 −2 −2 −1
13 6 −1 1 34 9 13 −2 4 −1
−2 −4 6 2 4 −2 −2 24 −4 −2
4 4 2 6 10 −2 4 −4 34 −2
−1 2 1 −1 −4 −1 −1 −2 −2 9


,

Det
{

M
(

ξ
(1)
13

)}
= 0.

The 10 × 10 information matrix, M(ξ
(1)
13 ), has a zero determinant and is therefore singular

and non-invertible. The variances of the predicted response, x′i M
−1{ξ

(1)
13 }xi, can only be eval-

uated using the Penrose inverse of M(ξ
(1)
13 ) through singular value decomposition (SVD).

MATLAB 7.5.0 (R200b) provides the singular value decomposition of M(ξ
(1)
13 ) as:

svd
{

M
(

ξ
(1)
13

)}
=



151.4177
38.6717
30.1252
24.4260
12.7040
7.6777
6.2330
3.5060
1.2388
0.0000


,

where [U, Σ, V] = svd
{

M
(

ξ
(1)
13

)}
gives:

U =



−0.265 0.005 −0.024 0.174 0.001 −0.349 −0.019 −0.396 0.347 −0.707
−0.220 −0.336 0.676 −0.578 0.127 −0.007 −0.134 −0.106 0.039 0.000
0.032 0.014 −0.220 −0.215 0.367 −0.628 −0.287 0.536 0.079 −0.000
−0.042 −0.177 −0.079 −0.250 −0.821 −0.268 0.274 0.250 0.125 −0.000
−0.874 0.152 −0.130 0.025 0.036 0.284 0.038 0.336 −0.020 −0.000
−0.189 0.090 0.122 0.104 −0.050 −0.435 0.131 −0.183 −0.830 0.000
−0.265 0.005 −0.02 00.174 0.001 −0.349 −0.019 −0.396 0.347 0.707
−0.006 0.351 −0.472 −0.696 0.064 0.070 0.092 −0.385 −0.058 0.000
−0.0970 −0.806 −0.482 0.012 0.048 0.102 −0.193 −0.156 −0.187 0.000
−0.023 0.227 0.014 0.014 −0.408 0.071 −0.872 −0.083 −0.098 0.000


,
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Σ =



151.418 0 0 0 0 0 0 0 0 0
038.672 0 0 0 0 0 0 0 0

0 0 30.125 0 0 0 0 0 0 0
0 0 0 24.426 0 0 0 0 0 0
0 0 0 0 12.704 0 0 0 0 0
0 0 0 0 0 7.678 0 0 0 0
0 0 0 0 0 0 6.233 0 0 0
0 0 0 0 0 0 0 3.506 0 0
0 0 0 0 0 0 0 0 1.239 0
0 0 0 0 0 0 0 0 0 0.000


,

V =



−0.265 0.005 −0.024 0.174 0.001 −0.349 −0.020 −0.396 0.347 −0.707
−0.220 −0.336 0.676 −0.578 0.127 −0.007 −0.134 −0.106 0.039 0.000
0.034 0.014 −0.220 −0.218 0.367 −0.628 −0.287 0.536 0.079 0.000
−0.042 −0.177 −0.079 −0.250 −0.821 −0.268 0.278 0.250 0.125 0.000
−0.874 0.152 −0.130 0.025 0.036 0.284 0.038 0.336 −0.020 −0.000
−0.189 0.090 0.122 0.104 −0.050 −0.435 0.131 −0.183 −0.830 −0.000
−0.265 0.005 −0.024 0.174 0.001 −0.349 −0.019 −0.396 0.347 0.707
−0.006 0.351 −0.472 −0.696 0.064 0.070 0.092 −0.385 −0.058 0.000
−0.097 −0.806 −0.482 0.012 0.048 0.102 −0.193 −0.156 −0.187 −0.000
−0.023 0.227 0.014 0.014 −0.408 0.071 −0.872 −0.083 −0.098 −0.000


.

From these results, it is also established that:

(i) M
(

ξ
(1)
12

)
= UΣV ′,

(ii) The Penrose inverse of (X′X) is (X′X)+ = VΣ−1U′.

The variances evaluated from x′i (X′X)+ xi are shown in Table 3.2.

3.3 Discussion of results

This study addressed the problem caused by the effect of a singular information matrix in
the initial designs of the quadratic portions for a three-variable response function within a
variance exchange process. The results of the analysis, based on data generated from designs
of sizes 12 and 13, are summarized in Tables 3.1 and 3.2, respectively. These tables present
the variances of the predicted responses at different variance points, demonstrating that the
information matrices of both initial designs, upon applying the Moore-Penrose inverse, are
invertible.

Furthermore, the minimum variance of the initial designs is less than the maximum vari-
ance of the corresponding complement designs, as shown by the following relationships:

max
x∈X(1)c

12

d
(

xw, ξ
(1)
12

)
= 7.8704 > min

x∈X(1)
12

d
(

xv, ξ
(1)
12

)
= 0.4440,

max
x∈X(1)c

13

d
(

xw, ξ
(1)
13

)
= 2.4771 > min

x∈X(1)
13

d
(

xv, ξ
(1)
13

)
= 0.4367.

These differences in optimum variances demonstrate that variance exchange is feasible.
Specifically, minimum variance points in the designs can be exchanged with maximum vari-
ance points from the complement designs.
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Table 3.2: Variances of points for the initial two-variable linear 13-point designs

Vector
Current Design Complement Design

Vector Point Var Vector Point Var
x1 (1 − 2 − 1 1 4 1 1 2 − 1 − 1) 0.9119 (1 − 2 − 1 − 1 4 1 1 2 2 1) 2.2958
x2 (1 − 2 0 − 1 4 0 1 0 2 0) 0.6858 (1 − 2 0 1 4 0 1 0 − 2 1) 2.0010
x3 (1 − 1 0 − 1 1 0 1 0 1 0) 0.4367 (1 − 2 1 − 1 4 1 1 − 2 2 − 1) 1.6021
x4 (1 − 1 1 − 1 1 1 1 − 1 1 − 1) 0.6174 (1 − 2 1 1 4 1 1 − 2 − 2 1) 2.4771
x5 (1 − 1 1 1 1 1 1 − 1 − 1 1) 0.8551 (1 − 1 − 1 − 1 1 1 1 1 1 1) 1.7240
x6 (1 1 − 1 − 1 1 1 1 − 1 − 1 1) 0.6464 (1 − 1 − 1 1 1 1 1 1 − 1 − 1) 1.0821
x7 (1 1 − 1 1 1 1 1 − 11 − 1) 0.5417 (1 − 1 0 1 1 0 1 0 − 1 0) 1.0007
x8 (1 1 0 1 1 0 1 0 1 0) 0.7317 (1 1 0 − 1 1 0 1 0 − 1 0) 0.7600
x9 (1 2 − 1 − 1 4 1 1 − 2 − 2 1) 0.6468 (1 1 1 − 1 1 1 1 1 − 1 − 1) 0.7032
x10 (1 2 − 1 1 4 1 1 1 − 2 2 − 1) 0.6468 (1 1 1 1 1 1 1 1 1 1) 0.7417
x11 (1 2 0 1 4 0 1 0 2 0) 0.4898 (1 2 0 − 1 4 0 1 0 − 2 0) 1.2063
x12 (1 2 1 − 1 4 1 1 1 2 − 2 − 1) 0.9308
x12 (1 2 1 1 4 1 1 2 2 1) 0.9400

4 Conclusion

This work investigated a technique for overcoming the challenges of variance exchange pro-
cesses when quadratic component designs of three-variable response polynomial functions are
involved. At the initial stages of such designs, the determinants of the information matrices
are typically zero, rendering the matrices non-invertible. Consequently, variances of predicted
responses at different design points, which are necessary for variance exchanges, cannot be
determined.

The results obtained show that the proposed algorithm successfully overcame these chal-
lenges. By applying the algorithm, the zero-determinant matrices were inverted, the variances
of the predicted responses were evaluated, and the variance exchange process became possi-
ble.

It is concluded, therefore, that when the starting design of a quadratic three-variable de-
sign is singular, the constructed algorithm should be applied to evaluate the variances of the
predicted responses at the design points and facilitate the variance exchange process.
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