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Abstract. In this paper, we present the exact analytical solution of the Dirac equation
with equal scalar and vector generalized Cornell potential plus a novel angle-dependent
potential in the framework of quasi-exactly solvable problems. By applying the func-
tional Bethe ansatz method, we derive the angular Dirac part solutions and by the
biconfluent Heun differential equation, the radial Dirac part solutions are determined.
The exact bound states and the corresponding energy eigenvalues are obtained. Over-
all, this paper is a general reference for many previous scientific researches because
it includes many potentials, both central and non-central, which in turn adds a new
addition to theoretical physics as well as modern mathematics.

Keywords: Dirac equation, Quasi-exactly solvable problems, Generalized Cornell po-
tential, Angle-dependent potential, Bethe ansatz method, Biconfluent Heun equation.
2020 Mathematics Subject Classification: 81R20, 81Q05, 81U15. MSC2020

1 Introduction

The Dirac equation is a relativistic wave equation that describes the behavior of spin- 1
2 par-

ticles, such as electrons, positrons, and quarks, within the framework of quantum mechanics
and special relativity [15, 16, 27]. The intricate mathematical structure of the Dirac equa-
tion has garnered considerable scholarly interest, affirming its prominence as a significant
field of study and application. Indeed, the Dirac equation has numerous applications across
physics and related disciplines due to its fundamental role in describing relativistic particles.
Some of its key applications include atomic and molecular physics, where it explains the
fine structure and energy levels of hydrogen and hydrogen-like atoms; high-energy and par-
ticle physics, where it describes interactions between charged particles and electromagnetic
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fields; and condensed matter physics, particularly in the study of graphene and topological
insulators, providing insights into the behavior of electrons in graphene and materials with
Dirac-like quasiparticles.

In recent decades, the Dirac equation has attracted significant attention, and its importance
has grown, particularly in the context of deriving solutions under different types of potentials,
both central and non-central [1, 4, 18, 20, 24]. Non-central potentials are especially significant
when analyzing systems where the interaction is not spherically symmetric. These potentials
profoundly affect the behavior of relativistic particles and their energy spectra.

Various methods have been employed to solve quantum physics problems involving cen-
tral and non-central potentials, as seen in works such as [3–6, 9, 11, 17, 19, 22, 23, 25, 28, 31, 36].

In this paper, we focus on solving the Dirac equation with a generalized Cornell potential
combined with a novel angle-dependent potential in the framework of quasi-exactly solvable
problems [32–35]. To achieve this, we adopt two different methods: the functional Bethe ansatz
method [21, 29, 37] and the biconfluent Heun differential equation [30]. Recently, numerous
studies have been published using the functional Bethe ansatz method, the biconfluent Heun
differential equation, or a combination of both [2, 7, 8, 10, 12–14, 26].

The structure of this paper is as follows: In Sect. 2, we present the Dirac equation under the
quasi-exactly solvable generalized Cornell potential combined with a novel angle-dependent
potential. In Sect. 3, the functional Bethe ansatz method is introduced. The polar and radial
wave functions are determined by adopting the functional Bethe ansatz method and the ap-
proach of the biconfluent Heun differential equation in Sect. 4. Additionally, we provide the
Dirac wave function along with the corresponding energy eigenvalues. Sect. 5 is dedicated to
presenting numerical results.

2 Dirac equation with equal scalar and vector potentials

The time-independent Dirac equation with a scalar potential S(r) and a vector potential V(r),
in natural units h̄ = c = 1, is expressed as [16]:

[α · p + β(M + S(r))] ψ(r) = [E − V(r)] ψ(r), (2.1)

where p = −i∇ is the momentum operator, M is the mass of the particle, E is the relativistic
energy of the system, and α and β are the 4 × 4 Dirac matrices given by

α =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, i = 1, 2, 3, (2.2)

where I is the 2 × 2 unit matrix, and σi are the 2 × 2 Pauli matrices defined as:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.3)

In the Pauli-Dirac representation:

ψ(r) =
(

φ(r)
χ(r)

)
. (2.4)

Substituting Eqs. (2.2)–(2.4) into Eq. (2.1) yields the following two coupled first-order dif-
ferential equations:

σ · p χ(r) = [E − V(r)− M − S(r)] φ(r), (2.5)

σ · p φ(r) = [E − V(r) + M + S(r)] χ(r). (2.6)
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Under the condition of equal scalar and vector potentials, Eqs. (4) and (5) reduce to:

σ · p χ(r) = [E − M − 2V(r)] φ(r), (2.7)

χ(r) =
σ · p

E + M
φ(r). (2.8)

Substituting Eq. (2.8) into Eq. (2.7) results in the following Schrödinger-like differential
equation:

[p2 + 2(E + M)V(r)] φ(r) = [E2 − M2] φ(r). (2.9)

We consider V(r) as the generalized Cornell potential plus a novel angle-dependent po-
tential, written in spherical coordinates as:

V(r) = V(r, θ) = V0(r) +
V1(θ)

r2 , (2.10)

where

V0(r) = a1r2 + a2r + a3 +
a4

r
+

a5

r2 , (2.11)

V1(θ) =
b1 + b2 sin2 θ

cos2 θ
+

b3

sin2 θ cos2 θ
, (2.12)

where ai and bj (i = 1, 2, . . . , 5, j = 1, 2, 3) are arbitrary parameters.

3 Functional Bethe Ansatz method

In this section, we provide a comprehensive overview of the functional Bethe ansatz method
[21, 37]. Consider the general second-order linear ordinary differential equation:[

P(t)
d2

dt2 + Q(t)
d
dt

+ W(t)
]

S(t) = 0, (3.1)

where P(t), Q(t), and W(t) are polynomials of degree at most 4, 3, and 2, respectively:

P(t) =
4

∑
k=0

pktk, Q(t) =
3

∑
k=0

qktk, W(t) =
2

∑
k=0

wktk, (3.2)

where pk, qk, and wk are parameters. Let n be a non-negative integer. The differential equation
(3.1) has nth-degree polynomial solutions S(t) of the form [37]:

S(t) =
n

∏
i=1

(t − ti), S(t) ≡ 1 for n = 0, (3.3)

where the coefficients wk of the polynomial W(t) must satisfy the constraints:

w2 = −n(n − 1)p4 − nq3, (3.4)

w1 = − [2(n − 1)p4 + q3]
n

∑
i=1

ti − n(n − 1)p3 − nq2, (3.5)

w0 = − [2(n − 1)p4 + q3]
n

∑
i=1

t2
i − 2p4

n

∑
i<j

titj − [2(n − 1)p3 + q2]
n

∑
i=1

ti

−n(n − 1)p2 − nq1, (3.6)
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and the roots t1, t2, . . . , tn are determined by the Bethe ansatz equations:

n

∑
j,i

2
ti − tj

+
q3t3

i + q2t2
i + q1ti + q0

p4t4
i + p3t3

i + p2t2
i + p1ti + p0

= 0, i = 1, 2, . . . , n. (3.7)

The above equations (3.4)–(3.7) determine all polynomials W(t) such that Eq. (3.1) admits
a polynomial solution (3.3). Hence, the differential equation (3.1) is quasi-exactly solvable for
certain parameter values.

4 Polar and radial Dirac wave functions

4.1 Separation of variables

In spherical coordinates, the wave function can be selected as

φn,l,m(r, θ, ϕ) =
Un,l,m(r)

r
Hl(θ)eimϕ, m = 0,±1,±2,±3, . . . (4.1)

Substituting Eq. (4.1) into Eq. (2.9) leads to a set of second-order differential equations:

d2Un,l,m(r)
dr2 +

[
−2(En,l,m + M)V0(r) + E2

n,l,m − M2 − λ

r2

]
Un,l,m(r) = 0, (4.2)

d2Hl(θ)

dθ2 +
1

tan θ

dHl(θ)

dθ
+

[
−2(En,l,m + M)V1(θ)−

ν

sin2 θ
+ λ

]
Hl(θ) = 0, (4.3)

where V0(r) and V1(θ) are given by Eqs. (2.11) and (2.12), respectively, and λ and ν are the
separation constants.

4.2 Solution of the polar equation

To find polynomial solutions for the polar equation (4.3), we perform a variable change t =

sin θ, resulting in the following second-order differential equation:

t2(1 − t2)2 d2Hl(t)
dt2 + t(2t2 − 1)(1 − t2)

dHl(t)
dt

+
[
[−2(En,l,m + M)b2 − λ] t4 + [−2(En,l,m + M)b1 + ν + λ]t2

−2(En,l,m + M)b3 − ν] Hl(t) = 0. (4.4)

Under the constraint b1 = −b2 − b3, Eq. (4.4) reduces to

t2(1− t2)
d2Hl(t)

dt2 + t(1− 2t2)
dHl(t)

dt
+
[
(λ + 2(En,l,m + M)b2) t2 − 2(En,l,m + M)b3 − ν

]
Hl(t) = 0.

(4.5)
This equation is amenable to the functional Bethe ansatz method. According to this

method, Eq. (4.5) has l-th degree polynomial solutions:

Hl(t) =
l

∏
i=1

(t − ti), H0(t) ≡ 1 for l = 0, (4.6)
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where the roots ti are determined by the Bethe ansatz equations:

l

∑
j,i

2
ti − tj

+
2t2

i − 1
ti(t2

i − 1)
= 0, i = 1, 2, . . . , l, (4.7)

provided the following conditions are satisfied:

l2 − 2l
l

∑
i=1

t2
i − 2

l

∑
i<j

titj = 2(En,l,m + M)b3 + ν, (4.8)

l(l + 1) = 2(En,l,m + M)b2 + λ, (4.9)

l
l

∑
i=1

ti = 0. (4.10)

4.2.1 Specific cases for l

Case l = 0: The polar wave function is given by

H0(θ) = 1,

and the relations between the separation constants λ, ν and the potential parameters b2, b3 are:

λ = −2(En,0,m + M)b2, (4.11)

ν = −2(En,0,m + M)b3. (4.12)

Case l = 1: The real roots of Eq. (4.7) are

t1 = ±
√

2
2

,

with the separation constant λ given by

λ = 2 − 2(En,1,m + M)b2,

and the potential parameter b3 constrained by

ν + 2(En,1,m + M)b3 = 0.

The corresponding polar wave function is

H1(θ) = sin θ ∓
√

2
2

. (4.13)

Case l = 2: The real roots are:

t1 = ±
√

6
3

, t2 = ∓
√

6
3

,

or

t1 = ±
√

6
8

±
√

22
8

, t2 = ∓
√

6
8

±
√

22
8

.
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The separation constant λ is given by

λ = 6 − 2(En,2,m + M)b2,

with the potential parameter b3 constrained by

ν + 2(En,2,m + M)b3 = 0.

The polar wave function takes the form:

H2(θ) = −cos 2θ

2
− 1

6
, (4.14)

H2(θ) = −cos 2θ

2
±

√
22

4
sin θ +

3
4

. (4.15)

In conclusion, the results indicate that Eq. (4.5) is quasi-exactly solvable for specific pa-
rameter values.

4.3 Solution of the radial equation

We now turn to the derivation of polynomial solutions to the radial equation. To achieve this,
we begin by transforming the differential equation (4.2) into a suitable form through substitu-
tion. Specifically, by setting the potential parameter a1 > 0 and applying the transformation

r1 = [2a1(En,l,m + M)]
1
4 r, (4.16)

the differential equation (4.2) reduces to

d2Un,l,m(r1)

dr2
1

+

[
c1 + c2r1 − r2

1 +
c3

r1
− c4

r2
1

]
Un,l,m(r1) = 0, (4.17)

where 
c1 =

−2a3(En,l,m + M) + E2
n,l,m − M2√

2a1(En,l,m + M)
,

c2 = −2a2(En,l,m + M) [2a1(En,l,m + M)]−
3
4 ,

c3 = −2a4(En,l,m + M) [2a1(En,l,m + M)]−
1
4 ,

c4 = 2a5(En,l,m + M) + λ.

(4.18)

Adopting the change of variable [2]

Un,l,m(r1) = r

1 +
√

4c4 + 1
2

1 exp
(

c2r1 − r2
1

2

)
u(r1), (4.19)

Eq. (4.17) transforms into

r1u′′(r1) +
[
1 +

√
4c4 + 1 + c2r1 − 2r2

1

]
u′(r1) +

[ c2

2

(
1 +

√
4c4 + 1

)
+ c3

+

(
c1 +

c2
2

4
−
√

4c4 + 1 − 2
)

r1

]
u(r1) = 0. (4.20)
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This corresponds precisely to the canonical form of the biconfluent Heun differential equa-
tion [30]

r1u′′(r1) +
(
1 + α − βr1 − 2r2

1
)

u′(r1) +

[
(γ − α − 2) r1 −

1
2
(δ + (1 + α) β)

]
u(r1) = 0, (4.21)

where the four Heun parameters are expressed as{
α =

√
4c4 + 1, β = −c2,

γ = c1 +
c2

2
4 , δ = −2c3.

(4.22)

The polynomial solution of Eq. (4.21) is given by [14, 30]

u(r1) = N(α, β, γ, δ; r1) =
+∞

∑
κ=0

Aκ

(1 + α)κ

rκ
1

κ!
, (4.23)

where

A0 = 1,

A1 =
(1 + α) β + δ

2
,

(α)κ =
Γ (α + κ)

Γ (α)
, κ ≥ 0.

Using the following recurrence formulas:

A1 + ηA0 = 0, (4.24)

A2 + (η − β)A1 + (1 + α) (γ − α − 2) A0 = 0, (4.25)

Aκ+2 + [η − (κ + 1) β] Aκ+1 + (γ − α − 2 − 2κ) (κ + 1) (α + κ + 1) Aκ = 0, κ ≥ 1, (4.26)

where η = − (1+α)β+δ
2 , and Aκ is a polynomial of degree κ in η, the series solution (4.23)

becomes a polynomial of degree n if and only if [30]

γ − α − 2 = 2n and An+1 = 0, n = 0, 1, 2, . . . (4.27)

It is important to note that there are at most (n + 1) suitable values of η, denoted by ηn
σ

with 0 ≤ σ ≤ n. These discrete values of ηn
σ correspond only to discrete values of a4 in the

potential (2.11).
As a result, upon applying the recurrence relations (4.24)–(4.26) and the condition (4.27),

the solution of the radial equation (4.17), which depends on the three quantum numbers n, l,
and m, can be written as

Un,l,m(r1) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

) n

∑
κ=0

Aκ

(1 + α)κ

rκ
1

κ!
, n, l, m = 0, 1, . . . (4.28)

where r1 = [2a1(En,l,m + M)]
1
4 r, A0 = 1, A1 = −ηn

σ , and Aκ for κ = 2, 3, . . . , n are polynomials
of degree κ in ηn

σ .
Moreover, considering Eqs. (4.18), (4.22), and the condition (4.27), the energy relation is

given by

E2
n,l,m − M2 − 2

√
2(En,l,m + M)a1

[
n + 1 +

√
2(En,l,m + M)a5 + λ +

1
4

]
+(En,l,m + M)

a2
2 − 4a1a3

2a1
= 0,

(4.29)
where the separation constant λ is given by Eq. (4.9).
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4.4 Bound states and their associated energy eigenvalues

In the framework of the results obtained, it is evident that the bound states of the Dirac
equation (2.1) are expressed as:

ψn,l,m(r, θ, ϕ) = [2a1(En,l,m + M)]
1
4

(
1

σ·p
En,l,m+M

)
r
−1+

√
1+4c4

2
1 exp

(
c2r1 − r2

1
2

+ imϕ

)
Hl(θ)

n

∑
κ=0

Aκ

(1 + α)κ

rκ
1

κ!
,

n, l, m = 0, 1, . . . ,

where

r1 = [2a1(En,l,m + M)]
1
4 r,

and Hl(θ) represents the polynomial solutions of Eq. (4.3).
The corresponding discrete energy levels, under the constraint of the potential parameters

b1 = −b2 − b3, take the form:

E2
n,l,m − M2 − 2

√
2(En,l,m + M)a1

n + 1 +

√
2(En,l,m + M) [a5 − b2] +

[
l +

1
2

]2


+(En,l,m + M)
a2

2 − 4a1a3

2a1
= 0. (4.30)

5 Numerical applications

In this section, we present examples of the wave function and the corresponding energy levels
for specific values of the quantum numbers n, l, and m as numerical applications. To achieve
this, the polynomials An and the corresponding solution Un,l,m(r) are computed for selected
values of n.

According to the recurrence relations (4.24)-(4.26), the coefficients are given by:

A0 = 1,

A1 = −η,

A2 = η2 − βη − (1 + α) (γ − α − 2),

A3 = −η3 + 3βη2 −
[

2β2 −
2

∑
i=1

i(γ − α − 2i)(i + α)

]
η − 2β(1 + α)(γ − α − 2),

A4 = η4 − 6βη3 +

[
11β2 −

3

∑
i=1

i(γ − α − 2i)(i + α)

]
η2

− β

[
6β2 + 4(γ − α − 6)(3 + α)−

3

∑
i=1

(i + 4)(γ − α − 2i)(i + α)

]
η

+ 3(1 + α)(γ − α − 2)
[
(γ − α − 6)(3 + α)− 2β2] .

Consequently, the explicit form of the function Un,l,m(r) for n = 1, 2, 3, 4 (valid for all l and
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m) is:

U0,l,m(r) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

)
,

U1,l,m(r) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

) [
1 +

A1

1 + α
r1

]
,

U2,l,m(r) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

) [
1 +

A1

1 + α
r1 +

A2

2!(1 + α)(2 + α)
r2

1

]
,

U3,l,m(r) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

) [
1 +

A1

1 + α
r1 +

A2

2!(1 + α)(2 + α)
r2

1

+
A3

3!(1 + α)(2 + α)(3 + α)
r3

1

]
,

U4,l,m(r) = r
1+

√
1+4c4
2

1 exp
(

c2r1 − r2
1

2

) [
1 +

A1

1 + α
r1 +

A2

2!(1 + α)(2 + α)
r2

1

+
A3

3!(1 + α)(2 + α)(3 + α)
r3

1

+
A4

4!(1 + α)(2 + α)(3 + α)(4 + α)
r4

1

]
.

In the case under consideration, we set a1 = 1, a2
2 = 4a3, a5 = b2, and M = 1. Under these

settings, the discrete energies can be expressed as:

E3
n,l,m − E2

n,l,m − En,l,m − 8
[

n + l +
3
2

]2

+ 1 = 0. (5.1)

Based on the above relations, we provide explicit energy values for n, l = 0, . . . , 5 and
∀m ∈ N:

E0 = E0,0,m =
4

9 3
√ √

681
3 + 235

27

+
3

√ √
681
3

+
235
27

+
1
3

,

E1 = E0,1,m = E1,0,m =
4

9 3
√ √

16475√
27

+ 667
27

+
3

√ √
16475√

27
+

667
27

+
1
3

,

E2 = E0,2,m = E1,1,m = E2,0,m =
4

9 3
√ √

64043√
27

+ 1315
27

+
3

√ √
64043√

27
+

1315
27

+
1
3

,

E3 = E0,3,m = E1,2,m = E2,1,m = E3,0,m =
4

9 3
√√

6513 + 2179
27

+
3

√√
6513 +

2179
27

+
1
3

,

E4 = E0,4,m = E1,3,m = E2,2,m = E3,1,m = E4,0,m =
4

9 3
√ √

393371√
27

+ 3259
27

+
3

√ √
393371√

27
+

3259
27

+
1
3

,

E5 = E0,5,m = E1,4,m = E2,3,m = E3,2,m = E4,1,m = E5,0,m =
4

9 3
√ √

768443√
27

+ 4555
27

+
3

√ √
768443√

27
+

4555
27

+
1
3

.
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When we set a1 = a3 = 1, a2 = 2 and a5 = b2 = 1
2 with the constraint of the potential

parameters b1 = −b2 − b3, the potential V(r) expressed in Eq. (2.10) turns into

V(r) = r2 + 2r + 1 +
a4

r
+

1
2r2 +

V1(θ)

r2 . (5.2)

Now, using the above results, we introduce the different values of the energy eigenvalues
En,l,m and η which are the roots of An+1, n = 1, 2, 3, 4 as shown in the Tables 1, 2 and 3.

Values of n Values of En,0,m Values of ηn
σ

1 E1 −0.89431, 4.4727
2 E2 −1.8606, 3.2846, 9.7580
3 E3 −2.9270, 2.0448, 8.2995, 15.678
4 E4 −4.1203, 0.75310, 6.7914, 13.974, 22.133

Table 1. Values of the discrete energies En,0,m and the roots ηn
σ for n = 1, 2, 3, 4.

Values of n Values of En,1,m Values of ηn
σ

1 E2 −1.5236, 5.2508
2 E3 −3.1228, 3.5457, 11.124
3 E4 −4.8164, 1.7799, 9.2243, 17.531
4 E5 −6.6202, −5.3368 × 10−2, 7.2724, 15.437, 24.405

Table 2. Values of the discrete energies En,1,m and the roots ηn
σ for n = 1, 2, 3, 4.

Values of n Values of En,2,m Values of ηn
σ

1 E3 −2.0383, 5.8874
2 E4 −4.151, 3.7192, 12.291
3 E5 −6.3518, 1.4871, 9.9740, 19.156
4 E6 −8.6522, −0.81601, 7.6019, 16.683, 26.437

Table 3. Values of the discrete energies En,2,m and the roots ηn
σ for n = 1, 2, 3, 4.

To conclude, it is straightforward to provide numerical examples of the explicit form of the
Dirac wave function ψn,l,m(r, θ, ϕ) and their corresponding energy levels En,l,m :

1. For n = l = m = 0, we have

ψ0,0,0 (r, θ, ϕ) = (2 + 2E0)
1
4

 1

σ·p
1+E0

 exp

[
−r2

1 − 2
5
4 (1 + E0)

1
4 r1

2

]
with E0 = E0,0,0.

2. For n = l = 1 and m = 2:

• When η ≈ −1.5236 is set, we get

ψ1,1,2(r, θ, ϕ) ≈ (2 + 2E2)
1
4

 1

σ·p
1+E2

[0.5078r2
1 + r1

]
exp

[
−r2

1 − 2
5
4 (1 + E2)

1
4 r1 + 4iϕ

2

]
H1(θ),



224 D. Bouchefra and B. Boudjedaa

with the corresponding energy level E2 = E1,1,2.

3. For n = 2, l = 1 and m = 2:

• If taking η ≈ 11.124, we are able to obtain

ψ2,1,2(r, θ, ϕ) ≈ (2 + 2E3)
1
4

 1

σ·p
1+E3

[1.6232 r3
1 − 2.781 r2

1 + r1
]

× exp

[
−r2

1 − 2
5
4 (1 + E3)

1
4 r1 + 4iϕ

2

]
H1(θ) with E3 = E2,1,2.

4. For n = 3, l = 1 and m = 2:

• When we take η ≈ 9.224, we can show that

ψ3,1,2(r, θ, ϕ) ≈ (2 + 2E4)
1
4

 1

σ·p
1+E4

[0.4673 r4
1 + 0.6155 r3

1 − 2.3061 r2
1 + r1

]

× exp

[
−r2

1 − 2
5
4 (1 + E4)

1
4 r1 + 4iϕ

2

]
H1(θ).

The corresponding energy level E4 = E3,1,2.

5. For n = 4, l = 1 and m = 2:

• In the case η ≈ 24.405, we find that

ψ4,1,2(r, θ, ϕ) ≈ (2 + 2E5)
1
4

 1

σ·p
1+E5

[2.0661 r5
1 − 8.5021 r4

1 + 11.623 r3
1 − 6.1013 r2

1 + r1

]

× exp

[
−r2

1 − 2
5
4 (1 + E5)

1
4 r1 + 4iϕ

2

]
H1(θ),

with the energy level E5 = E4,1,2.

6. For n = 4, l = 2 and m = 3:

• When η ≈ −0.8160, it follows that

ψ4,2,3(r, θ, ϕ) ≈ (2 + 2E6)
1
4

 1

σ·p
1+E6

[−0.0267 r6
1 − 0.2317 r5

1 − 0.5234 r4
1 + 0.136 r3

1 + r2
1

]

× exp

[
−r2

1 − 2
5
4 (1 + E6)

1
4 r1 + 6iϕ

2

]
H2(θ).

The corresponding energy level is E6 = E4,2,3.

It should be noted that the potential parameters for all these cases are constrained by

b1 = −b2 and b3 = 0. Furthermore, r1 = [2a1(En,l,m + M)]
1
4 r, where H1(θ) is given by

Eq. (4.13) and H2(θ) is provided in Eqs. (4.14)–(4.15).
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6 Conclusion

In this work, we solved the Dirac equation with non-central scalar and vector potentials,
including the generalized Cornell potential combined with a novel angle-dependent potential,
within the framework of quasi-exactly solvable problems. The bound states and energy levels
associated with the problem have been determined.

By employing the functional Bethe ansatz method to derive the polynomial solutions of
the polar equation and utilizing the biconfluent Heun differential equation to solve the radial
equation, we presented the Dirac wave function. To validate our findings, numerical results
were also provided.
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