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Abstract. In this work, we explicitly solve the following:

• A higher-order non-autonomous difference equation:

xn+1 = αnxn−k +
βn

xnxn−1 · · · xn−k+1
,

where n ∈ N0, k ∈ N, the sequences (αn)n∈N0
and (βn)n∈N0

are real, and the initial
values x−k, x−k+1, . . . , x0 are nonzero real numbers.

• A three-dimensional system of second-order difference equations:

xn+1 =
a1yn−1zn−1

axn−1 + byn−1 + czn−1
, yn+1 =

a2xn−1zn−1

axn−1 + byn−1 + czn−1
,

zn+1 =
a3xn−1yn−1

axn−1 + byn−1 + czn−1
,

where n ∈ N0, the parameters a, b, c, a1, a2, a3 are real numbers, and the initial
values x−1, x0, y−1, y0, z−1, z0 are nonzero real numbers.

• A three-dimensional system of first-order difference equations:

xn+1 =
a1ynzn

axn + byn + czn
, yn+1 =

a2xnzn

axn + byn + czn
, zn+1 =

a3xnyn

axn + byn + czn
,

where n ∈ N0, the parameters a, b, c, a1, a2, a3 are real numbers, and the initial
values x0, y0, z0 are nonzero real numbers.
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1 Introduction

Difference equations and their systems play a crucial role in modeling phenomena that evolve
over discrete time steps. These models are widely applied across fields such as population dy-
namics, economics, and engineering. The search for explicit solutions to difference equations
remains a key focus, drawing significant attention from researchers aiming to understand the
behavior of discrete-time systems and facilitate informed decision-making. Numerous studies
have contributed to this area (e.g., [1–6, 9–18, 20, 21]).

In [19], the authors studied the system of difference equations

un+1 =
a

un
+

b
vn

, vn+1 =
a

un
, n ∈ N0. (1.1)

Substituting the second equation of this system into the first yields

un+2 =
a

un+1
+

b
vn+1

=
a

un+1
+

b
a

un

=
a

un+1
+

b
a

un, n ∈ N0.

This equation can be expressed in the standard form

xn+1 =
α

xn
+ βxn−1, n ∈ N0, (1.2)

where x−1 and x0 are the initial values, and α and β are parameters.
In the first part of this work, inspired by the above equation, we study the more general

higher-order difference equation

xn+1 = αnxn−k +
βn

xnxn−1 · · · xn−k+1
, (1.3)

where n ∈ N0, k ∈ N, the sequences (αn)n∈N0
and (βn)n∈N0

are real, and the initial values
x−k, x−k+1, . . . , x0 are nonzero real numbers.

In the second part of this work, we analyze a three-dimensional system of second-order
difference equations given by

xn+1 =
a1yn−1zn−1

axn−1 + byn−1 + czn−1
, yn+1 =

a2xn−1zn−1

axn−1 + byn−1 + czn−1
, zn+1 =

a3xn−1yn−1

axn−1 + byn−1 + czn−1
,

(1.4)
where n ∈ N0, a, b, c, a1, a2, a3 are real parameters, and the initial values x−1, x0, y−1, y0, z−1, z0

are nonzero real numbers. For a = b = c = 1, this system simplifies to

xn+1 =
a1yn−1zn−1

xn−1 + yn−1 + zn−1
, yn+1 =

a2xn−1zn−1

xn−1 + yn−1 + zn−1
, zn+1 =

a3xn−1yn−1

xn−1 + yn−1 + zn−1
. (1.5)

This particular system (1.5) was solved by Elsayed et al. in [8]. Motivated by their work, we
derive closed-form solutions for System (1.4), generalizing the results from [8] and providing
further insights.

In the third part, we explicitly solve the following three-dimensional system of first-order
difference equations:

xn+1 =
a1ynzn

axn + byn + czn
, yn+1 =

a2xnzn

axn + byn + czn
, zn+1 =

a3xnyn

axn + byn + czn
, (1.6)

where n ∈ N0, a, b, c, a1, a2, a3 are real parameters, and x0, y0, z0 are nonzero real initial values.
At the end of this work, we propose an open problem extending Systems (1.4) and (1.6).
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2 The equation xn+1 = αnxn−k +
βn

xnxn−1...xn−k+1

In this part we give explicit formulas for well defined solutions of the equation (1.3) and we
will give a special attention to the autonomous case.

Definition 2.1. A well defined solution (xn)
+∞
n=−k of Equation (1.3), is a solution such that

xn , 0, n = −k,−k + 1, · · · .

The following result is devoted to the closed form of the solutions of Equation (1.3).

Theorem 2.2. Let (xn)
+∞
n=−k be a well defined solution of Equation (1.3), then for n = 0, 1, ..., and

l = 0, ..., k, we have

x(k+1)n+l+1 = x−k+l

n

∏
r=0


(

∏(k+1)r+l
i=0 αi

)
x0x−1...x−k + ∑(k+1)r+l

j=0

(
∏(k+1)r+l

i=j+1 αi

)
β j(

∏(k+1)r+l−1
i=0 αi

)
x0x−1...x−k + ∑(k+1)r+l−1

j=0

(
∏(k+1)r+l−1

i=j+1 αi

)
β j

 ,

and in the autonomous case, that is when αn = α, βn = β we have

x(k+1)n+l+1 = x−k+l

n

∏
r=0

α(k+1)r+l+1x0x−1...x−k +
(

α(k+1)r+l+1−1
α−1

)
β

α(k+1)r+lx0x−1...x−k +
(

α(k+1)r+l−1
α−1

)
β

 ,

if α , 1, and

x(k+1)n+l+1 = x−k+l

n

∏
r=0

(
x0x−1...x−k + ((k + 1)r + l + 1) β

x0x−1...x−k + ((k + 1)r + l) β

)
,

if α = 1.

Proof. For every well-defined solution (xn)
+∞
n=−k of Equation (1.3), we can write

xnxn−1...xn−k+1xn+1 = αnxnxn−1...xn−k+1xn−k + βn. (2.1)

Putting
yn = xnxn−1...xn−k+1xn−k, n = 0, 1, ..., (2.2)

then from (2.1), we get the following well-known non-autonomous first-order linear difference
equation

yn+1 = αnyn + βn, n = 0, 1, ..., (2.3)

the solutions of Equation (2.3), see for example [7], are given by

yn =

(
n−1

∏
i=0

αi

)
y0 +

n−1

∑
j=0

(
n−1

∏
i=j+1

αi

)
β j, (2.4)

where
y0 = x0x−1...x−k. (2.5)

It follows from (2.2) that,

xn+1 =
yn+1

yn
xn−k, n = 0, 1, ..., (2.6)
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from this equation, we obtain that

x(k+1)n+l+1 = x−k+l

n

∏
r=0

(
y(k+1)r+l+1

y(k+1)r+l

)
, l = 0, ..., k. (2.7)

Using (2.4) and (2.5), from(2.7), we get

x(k+1)n+l+1 = x−k+l

n

∏
r=0


(

∏(k+1)r+l
i=0 αi

)
x0x−1...x−k + ∑(k+1)r+l

j=0

(
∏(k+1)r+l

i=j+1 αi

)
β j(

∏(k+1)r+l−1
i=0 αi

)
x0x−1...x−k + ∑(k+1)r+l−1

j=0

(
∏(k+1)r+l−1

i=j+1 αi

)
β j

 , l = 0, ..., k.

(2.8)
Now, if αn = α, βn = β, then by replacing in (2.8), we get

x(k+1)n+l+1 = x−k+l

 n

∏
r=0

α(k+1)r+l+1x0x−1...x−k +
(

α(k+1)r+l+1−1
α−1

)
β

α(k+1)r+lx0x−1...x−k +
(

α(k+1)r+l−1
α−1

)
β

 , l = 0, ..., k (2.9)

if α , 1, and

x(k+1)n+l+1 = x−k+l

n

∏
r=0

(
x0x−1...x−k + ((k + 1)r + l + 1) β

x0x−1...x−k + ((k + 1)r + l) β

)
, l = 0, ..., k (2.10)

if α = 1. □

The following result concerns the periodicity of well-defined solutions of the autonomous
equation.

Corollary 2.3. Assume that αn = α, βn = β, α , 1, and x0x−1 · · · x−k = β
1−α . Then every well-

defined solution of the equation (1.3) is periodic with period k + 1.

Proof. Replacing x0x−1 · · · x−k =
β

1−α in (2.9), we obtain that for n = 0, 1, · · · ,

x(k+1)n+l+1 = x−k+l , l = 0, . . . , k,

which implies that the solution is periodic with period k + 1 and takes the form

x−k, x−k+1, . . . , x0, x−k, x−k+1, . . . , x0, · · · .

□

3 The system xn+1= a1yn-1zn-1
axn-1+byn-1+czn-1

, yn+1= a2xn-1zn-1
axn-1+byn-1+czn-1

, zn+1= a3xn-1yn-1
axn-1+byn-1+czn-1

In this part, we are interested in solving the three-dimensional system of second-order differ-
ence equations given in (1.4). We begin with the following definition.

Definition 3.1. A well-defined solution (xn, yn, zn)n≥−1 of System (1.4) is a solution such that:

ax + byn−1 + czn−1 , 0, n ∈ N0.

Lemma 3.2. Let (xn, yn, zn)n≥−1 be a well-defined solution of System (1.4). Then,

xn · yn · zn , 0, n = −1, 0, · · · .
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Proof. Assume, for example, that there exists n0 ≥ −1 such that xn0 = 0. It is straightforward
to see that yn0+2 = 0 and zn0+2 = 0, leading to xn0+4 = 0, yn0+4 = 0, and zn0+4 = 0. From
these equalities, we obtain xn0+6 = 0

0 , yn0+6 = 0
0 , and zn0+6 = 0

0 . This implies that the terms
xn0+6, yn0+6, zn0+6 are undefined. □

We now proceed to solve the system. From (1.4), we get:

xn+1

yn+1
=

a1yn−1

a2xn−1
,

yn+1

zn+1
=

a2zn−1

a3yn−1
,

zn+1

xn+1
=

a3xn−1

a1zn−1
. (3.1)

Let
un =

xn

yn
, vn =

yn

zn
, wn =

zn

xn
, n ∈ N0. (3.2)

Substituting (3.2) into (3.1), we obtain the following three independent equations:

un+1 =
a1

a2un−1
, vn+1 =

a2

a3vn−1
, wn+1 =

a3

a1wn−1
, n ∈ N0.

It is easy to verify that the sequences (un)n≥−1, (vn)n≥−1, and (wn)n≥−1 are periodic with
a period of four, and for n ∈ N0, we have:

u4n−1 = u−1, u4n = u0, u4n+1 =
a1

a2u−1
, u4n+2 =

a1

a2u0
, (3.3)

v4n−1 = v−1, v4n = v0, v4n+1 =
a2

a3v−1
, v4n+2 =

a2

a3v0
, (3.4)

w4n−1 = w−1, w4n = w0, w4n+1 =
a3

a1w−1
, w4n+2 =

a3

a1w0
. (3.5)

Now, using equations in (1.4) and the change of variable in (3.2), we get for n = 0, 1, · · · ,

xn+1 =
a1wn−1

aun−1 + b + cun−1wn−1
xn−1, (3.6)

yn+1 =
a2un−1

aun−1vn−1 + bvn−1 + c
yn−1, (3.7)

zn+1 =
a3vn−1

a + bwn−1vn−1 + cwn−1
zn−1. (3.8)

Using the formulas of the sequences (un)n≥−1, (vn)n≥−1, and (wn)n≥−1 given in (3.3)-(3.5), it
follows from (3.6)-(3.8) that for n ∈ N0, we have

•
x4n+1 = α0x4n−1, α0 =

a1w−1

au−1 + cu−1w−1 + b
. (3.9)

•
x4n+2 = α1x4n, α1 =

a1w0

au0 + cu0w0 + b
. (3.10)

•
x4n+3 = α2x4n+1,

using (3.9), we get

x4n+3 = α0α2x4n−1, α2 =
a2a3u−1

aa1w−1 + ba2w−1u−1 + ca3
. (3.11)
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•
x4n+4 = α3x4n+2,

and by (3.10), we obtain

x4n+4 = α1α3x4n, α3 =
a2a3u0

aa1w0 + ba2w0u0 + ca3
. (3.12)

•
y4n+1 = β0y4n−1, β0 =

a2u−1

au−1v−1 + bv−1 + c
, (3.13)

•
y4n+2 = β1y4n, β1 =

a2u0

au0v0 + bv0 + c
, (3.14)

•
y4n+3 = β2y4n+1,

and using (3.13), we get

y4n+3 = β0β2y4n−1, β2 =
a1a3v−1

ca3v−1u−1 + ba2u−1 + aa1
. (3.15)

•
y4n+4 = β3y4n+2,

using (3.14), we obtain

y4n+4 = β1β3y4n, β3 =
a1a3v0

ca3v0u0 + ba2u0 + aa1
.

•
z4n+1 = γ0z4n−1, γ0 =

a3v−1

a + bw−1v−1 + cw−1
. (3.16)

•
z4n+2 = γ1z4n, γ1 =

a3v0

a + bw0v0 + cw0
. (3.17)

•
z4n+3 = γ2z4n+1,

using (3.16), we get

z4n+3 = γ0γ2z4n−1, γ2 =
a2a1w−1

aa1v−1w−1 + ca3v−1 + ba2
. (3.18)

•
z4n+4 = γ3z4n+2,

and by (3.17), we obtain

z4n+4 = γ1γ3z4n, γ3 =
a2a1w0

aa1v0w0 + ca3v0 + ba2
. (3.19)
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To obtain the forms of the sequences (xn)n≥−1, (yn)n≥−1, and (zn)n≥−1, we need to solve the
equations (3.9)-(3.19).
Let

X1
n = x4n, n ∈ N0,

then we have X1
0 = x0, and the equation (3.12) becomes

X1
n+1 = α1α3X1

n,

which is a first-order linear (homogeneous) difference equation. Its solution is given by

X1
n = (α1α3)

nX1
0 , n ∈ N0.

This implies that

x4n =

(
a1a2a3u0w0

((a + cw0)u0 + b) ((aa1 + ba2u0)w0 + ca3)

)n

x0.

Finally, using the fact that

u0 =
x0

y0
, v0 =

y0

z0
, w0 =

z0

x0
, (3.20)

we get

x4n =

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0z0)

)n

x0. (3.21)

Now, let
X2

n = x4n−1, n ∈ N0,

then we have X2
0 = x−1, and the equation (3.11) becomes

X2
n+1 = α0α2X2

n, n ∈ N0.

This is a first-order linear (homogeneous) difference equation, and its solution is given by

X2
n = (α0α2)

nX2
0 , n ∈ N0.

This implies that

x4n−1 =

(
a1a2a3u−1w−1

((a + cw−1)u−1 + b) ((aa1 + ba2u−1)w−1 + ca3)

)n

x−1.

Finally, using the fact that

u−1 =
x−1

y−1
, v−1 =

y−1

z−1
, w−1 =

z−1

x−1
, (3.22)

we get

x4n−1 =

(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1z−1)

)n

x−1. (3.23)

From (3.9), (3.22), and (3.23), we get

x4n+1 =

(
a1y−1z−1

ax−1 + by−1 + cz−1

)(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1z−1)

)n

.

(3.24)
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Finally, from (3.10), (3.20), and (3.21), we get

x4n+2 =

(
a1y0z0

ax0 + by0 + cz0

)(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0z0)

)n

. (3.25)

Following the same steps as in the formulas for the sequences (xn)n≥−1, we obtain

y4n−1 =

(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

y−1, (3.26)

y4n =

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

y0, (3.27)

y4n+1 =

(
a2x−1z−1

ax−1 + by−1 + cz−1

)(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

,

(3.28)

y4n+2 =

(
a2x0z0

ax0 + by0 + cz0

)(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

, (3.29)

z4n−1 =

(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

z−1, (3.30)

z4n =

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

, (3.31)

z4n+1 =

(
a3x−1y−1

ax−1 + by−1 + cz−1

)(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

,

(3.32)

z4n+2 =

(
a3x0y0

ax0 + by0 + cz0

)(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

. (3.33)

In summary, and after some rearrangement, the formulas for the solutions of System (1.4) are
given in the following result:

Theorem 3.3. Let (xn, yn, zn)n≥−1 be a solution for System (1.4). Then, for n = 0, 1, · · · , we have

x4n−1 = xn+1
−1

(
a1a2a3y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1z−1)

)n

,

x4n = xn+1
0

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0z0)

)n

,

x4n+1 =

(
a2a3x−1

(aa1y−1 + ba2x−1)z−1 + ca3x−1z−1

)n ( a1y−1z−1

ax−1 + by−1 + cz−1

)n+1

,

x4n+2 =

(
a2a3x0

(aa1y0 + ba2x0)z0 + ca3x0z0

)n ( a1y0z0

ax0 + by0 + cz0

)n+1

,

y4n−1 = yn+1
−1

(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

,

y4n = yn+1
0

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

,

y4n+1 =

(
a1a3y−1

(aa1y−1 + ba2x−1)z−1 + ca3x−1y−1

)n ( a2x−1z−1

ax−1 + by−1 + cz−1

)n+1

,
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y4n+2 =

(
a1a3y0

(aa1y0 + ba2x0)z0 + ca3x0y0

)n ( a2x0z0

ax0 + by0 + cz0

)n+1

,

z4n−1 = zn+1
−1

(
a1a2a3x−1y−1z−1

(ax−1 + by−1 + cz−1) ((aa1y−1 + ba2x−1)z−1 + ca3x−1y−1)

)n

,

z4n = zn+1
0

(
a1a2a3x0y0z0

(ax0 + by0 + cz0) ((aa1y0 + ba2x0)z0 + ca3x0y0)

)n

,

z4n+1 =

(
a1a2z−1

(aa1y−1 + ba2x−1)z−1 + ca3x−1y−1

)n ( a3x−1y−1

ax−1 + by−1 + cz−1

)n+1

,

z4n+2 =

(
a1a2z0

(aa1y0 + ba2x0)z0 + ca3x0y0

)n ( a3x0y0

ax0 + by0 + cz0

)n+1

.

Remark 3.4. The formulas for the solutions of the following particular system

xn+1 =
a1yn−1zn−1

xn−1 + yn−1 + zn−1
, yn+1 =

a2xn−1zn−1

xn−1 + yn−1 + zn−1
, zn+1 =

a3xn−1yn−1

xn−1 + yn−1 + zn−1
,

can be obtained from Theorem 3.3 by setting a = b = c = 1, and the formulas obtained in this
case are the same as those given by Elsayed et al. in Theorem 3 of [8].

4 The system xn+1 =
a1ynzn

axn+byn+czn
, yn+1 =

a2xnzn
axn+byn+czn

, zn+1 =
a3xnyn

axn+byn+czn
.

In this part, we explicitly solve the three-dimensional system of first-order difference equations
defined by (1.6).
For System (1.6), a solution (xn, yn, zn)n≥0 is said to be well-defined if axn + byn + czn , 0, for
n ∈ N0. Additionally, it is easy to see that for every well-defined solution (xn, yn, zn)n≥0 of
System (1.6), we have

xn · yn · zn , 0, n = 0, 1, . . . .

To solve System (1.6), we will proceed similarly to the method used for System (1.4). From
(1.6), we get the following relations:

xn+1

yn+1
=

a1yn

a2xn
,

yn+1

zn+1
=

a2zn

a3yn
,

zn+1

xn+1
=

a3xn

a1zn
. (4.1)

Let
un =

xn

yn
, vn =

yn

zn
, wn =

zn

xn
, n ∈ N0. (4.2)

From (4.1) and (4.2), we obtain the following three independent equations:

un+1 =
a1

a2un
, vn+1 =

a2

a3vn
, wn+1 =

a3

a1wn
, n ∈ N0.

It is easy to see that the sequences (un)n≥0, (vn)n≥0, and (wn)n≥0 are periodic with period two,
and their terms are given for n ∈ N0 by

u2n = u0, u2n+1 =
a1

a2u0
, (4.3)

v2n = v0, v2n+1 =
a2

a3v0
, (4.4)
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w2n = w0, w2n+1 =
a3

a1w0
. (4.5)

Now, using the equations in (1.6) and the change of variables in (4.2), we obtain the fol-
lowing equations for n = 0, 1, . . . :

xn+1 =
a1wn

aun + b + cunwn
xn, (4.6)

yn+1 =
a2un

aunvn + bvn + c
yn, (4.7)

zn+1 =
a3vn

a + bwnvn + cwn
zn. (4.8)

Using the formulas for the sequences (un)n≥0, (vn)n≥0, and (wn)n≥0 given in (4.3)-(4.5), it
follows from (4.6)-(4.8) that for n ∈ N0, we have:

•
x2n+1 = α0x2n, α0 =

a1w0

au0 + cu0w0 + b
. (4.9)

•
x2n+2 = α1α0x2n, α1 =

a2a3u0

aa1w0 + ba2w0u0 + ca3
. (4.10)

•
y2n+1 = β0y2n, β0 =

a2u0

au0v0 + bv0 + c
. (4.11)

•
y2n+2 = β1β0y2n, β1 =

a1a3v0

ca3v0u0 + ba2u0 + aa1
. (4.12)

•
z2n+1 = γ0z2n, γ0 =

a3v0

a + bw0v0 + cw0
. (4.13)

•
z2n+2 = γ1γ0z2n, γ1 =

a2a1w0

aa1v0w0 + ca3v0 + ba2
. (4.14)

To obtain the formulas for the terms of the sequences (x)n≥0, (y)n≥0, and (z)n≥0, we need
to solve the equations (4.9)-(4.14).
Let

Xn = x2n, n ∈ N0,

then we have X0 = x0, and the equation (4.10) becomes

Xn+1 = α0α1Xn,

which is a first-order linear (homogeneous) difference equation. Its solution is given by

Xn = (α0α1)
nX0, n ∈ N0,

which implies that

x2n =

(
a1a2a3u0w0

(au0 + cu0w0 + b)(aa1w0 + ba2u0w0 + ca3)

)n

x0.
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Finally, using the fact that

u0 =
x0

y0
, v0 =

y0

z0
, w0 =

z0

x0
, (4.15)

we get

x2n = xn+1
0

(
a1a2a3y0z0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

)n

. (4.16)

From (4.9), we have x2n+1 = α0x2n. Using (4.16) and (4.15), we get

x2n+1 = xn
0

(
a1y0z0

ax0 + by0 + cz0

)(
a1a2a3y0z0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

)n

. (4.17)

Following the same steps as for the sequences (xn)n≥0, we obtain the following formulas
for the sequences (yn)n≥0 and (zn)n≥0:

y2n = yn+1
0

(
a1a2a3x0z0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

)n

, (4.18)

y2n+1 = yn
0

(
a2x0z0

ax0 + by0 + cz0

)(
a1a2a3x0z0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

)n

, (4.19)

z2n = zn+1
0

[
a1a2a3x0y0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

]n

, (4.20)

z2n+1 = zn
0

(
a2x0y0

ax0 + by0 + cz0

)(
a1a2a3x0y0

(ax0 + by0 + cz0)(aa1y0z0 + ba2x0z0 + ca3x0y0)

)n

. (4.21)

5 Conclusion and open problem.

In the present work, we have first explicitly solved the higher-order difference equation (1.3)
in both the non-autonomous and autonomous cases. A condition for the existence of periodic
solutions in the case of constant coefficients was provided. Secondly, we have also solved in
closed form the systems of difference equations defined by (1.4) and (1.6). Notably, the results
we obtained for System (1.4) explain and extend those of Elsayed et al. in [8]. Finally, for
interested readers, we propose the following open problem:
Solve explicitly the following higher-order system of difference equations defined by

xn+1 =
a1yn−kzn−k

axn−k + byn−k + czn−k
, yn+1 =

a2xn−kzn−k

axn−k + byn−k + czn−k
, zn+1 =

a3xn−kyn−k

axn−k + byn−k + czn−k
,

where n ∈ N0, k ∈ N2, the parameters a, b, c, a1, a2, a3 are real numbers, and the initial values
x−k, . . . , x0, y−k, . . . , y0, z−k, . . . , z0 are non-zero real numbers.
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