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Abstract. COVID-19 emerged in December 2019 and became a global threat, prompt-
ing heightened global surveillance from 2020 to 2022. Although COVID-19 continues
to circulate and evolve, global surveillance has substantially reduced. The reduction
in surveillance came after the introduction of vaccines worldwide. We formulated a
mathematical model to investigate how incorporating vaccines impacts the dynamics
of COVID-19 transmission. The study qualitatively analyzed the model and calculated
the basic reproduction numbers (R(). We estimated the model’s parameters by fitting
the model to real COVID-19 case data and using maximum likelihood estimation. To
determine which parameters have the greatest impact on the spread and transmission
of disease, a sensitivity analysis is carried out. The analysis revealed that the trans-
mission rate B is the most important factor responsible for the spread of COVID-19,
while the vaccination rate v has the most significant impact on controlling the disease.
The numerical simulations showed that a high vaccination rate significantly reduces ex-
posed, asymptomatic, symptomatic, and hospitalized individuals, reducing the impact
of the virus on the community. It is crucial to consider the rate of immunity loss, as
neglecting it could negate the benefits of vaccination.
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sensitivity analysis.
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1 Introduction

As of 31 March 2024, over 774 million confirmed COVID-19 cases and more than seven mil-
lion deaths had been reported worldwide. COVID-19 is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Now in its fourth year, COVID-19 continues to circu-
late and evolve. Millions continue to become infected or reinfected with SARS-CoV-2 despite
reduced surveillance, and tragically, thousands continue to die globally [29]. This situation
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necessitates long-term prevention, control, and management strategies. Surveillance has de-
clined, with many countries ceasing to report COVID-19 cases; only 42% of countries reported
between February and March 2024. Nevertheless, new cases and deaths have fallen sharply
since vaccines were introduced [29].

COVID-19 spread rapidly across borders, creating an urgent threat that required immedi-
ate interventions. Governments introduced several non-pharmaceutical interventions to break
the chain of transmission [24]. While COVID-19 is primarily a respiratory illness, it can also
damage other vital organs, such as the heart, even though the virus does not directly infect
heart tissue. The immune response triggered by infection can cause serious inflammation
throughout the body [13]. The disease poses the greatest risk to the elderly and those with
pre-existing health conditions, although severe illness can also occur in newborns and healthy
individuals. The outbreak of COVID-19 led to the rapid development of vaccines to fight
the virus. Multiple research teams and pharmaceutical companies rose to the challenge, with
many collaborating to develop vaccines against SARS-CoV-2 [26]. Initial vaccination strategies
prioritised individuals at high risk of complications, primarily the elderly over 65 years and
key workers, before later including the remaining adult population and children. As the vac-
cines did not provide complete protection, booster shots were administered to maintain high
levels of immunity against waning vaccine efficacy [26]. However, no COVID-19 vaccines
are currently available for infants under six months old [3,11]. The introduction of vaccines
as a major pharmaceutical intervention led to a substantial decline in COVID-19-associated
hospitalisations and deaths since March 2021 [5,10,21].

Experts have formulated mathematical models to understand disease transmission dynam-
ics in the context of vaccination. According to [22], researchers develop vaccination-related
models to address various issues, such as determining the proportion of the population that
needs to be immunised to eradicate the infectious agent and analysing the costs associated
with implementing a mass vaccination programme. They also examine the implications if
target coverage for eradication is not reached, assess the effects of waning vaccine-induced
immunity, investigate the emergence of vaccine-resistant variants, and evaluate the role of
booster doses in mitigating infections caused by mutations.

For example, [20] developed a model to assess the effect of vaccination on mortality and
morbidity across age groups and to determine prioritisation strategies. In [17], the authors
presented a method focused on allocating finite vaccine doses to minimise transmission. In
[26], a mathematical model of COVID-19 transmission and vaccination was developed to fit
reported mortality and excess mortality data in 185 countries, estimating the number of deaths
that could have been averted had WHO vaccination coverage targets been met by the end of
2021. Similarly, [28] examined the impact of COVID-19 vaccines on the pandemic.

In [19], a model was proposed to understand UK epidemiological data and estimate vac-
cine efficacy, predicting the possible long-term dynamics of SARS-CoV-2 under a two-dose
vaccination rollout and relaxation of non-pharmaceutical interventions (NPIs). This model
estimated the basic reproduction number Ry and patterns of daily deaths and hospital ad-
missions from January 2021 to January 2024. In [6], a model incorporating vaccination and
treatment deduced that the critical vaccination threshold for eradication depends on vaccine
efficacy.

Further, [22] introduced mass vaccination models predicting threshold coverage rates needed
to eradicate infection, exploring vaccine-induced immunity waning over time, and examining
interactions between vaccine-susceptible and vaccine-resistant strains. In [8], a model assessed
vaccination programme impacts on transmission potential in large populations. [15] evaluated
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vaccination’s role in breaking transmission in South Africa, while [9] proposed a model indi-
cating that an imperfect SARS vaccine could reduce the reproduction number below one to
control outbreaks. [14] analysed COVID-19 infection dynamics with vaccination.

The authors of [2] investigated coronavirus dynamics in Saudi Arabia using a fractional-
order vaccination model. [1] forecasted epidemic evolution during a vaccination campaign,
while [23] used a compartmental model to advise on border restrictions during vaccine rollout.
In [7], vaccination impacts on infection spread in Gauteng, South Africa were demonstrated,
and [27] studied vaccination’s impact on COVID-19 spread dynamics.

This study aims to understand the effects of vaccination rates and loss of protection on
disease transmission. We present our model in Section 2, analyze its qualitative properties
in Section 3, discuss results and simulations in Section 4, and conclude with key findings in
Section 5.

2 Model description

We consider a population with homogeneous mixing, meaning all individuals have equal
probability of contact with each other. The model comprises seven compartments representing
different epidemiological states at time ¢:

® S(t): Susceptible individuals
e V(t): Vaccinated individuals
¢ E(t): Exposed individuals
e A(t): Asymptomatic infected individuals
¢ ](t): Symptomatic infected individuals
¢ H(t): Hospitalized individuals
* P(t): Protected /recovered individuals
The total population is given by:
N(t) = S(t)+ V() + E(t) + A(t) + I(t) + H(t) + P(t).
The system dynamics are governed by the following parameters:

¢ II: Recruitment rate into the susceptible class

¢ B: Disease transmission rate

C1: Probability of infection from asymptomatic contact

(»: Probability of infection from symptomatic contact

¢ u: Natural mortality rate (non-COVID-19)

01: Rate from exposed to asymptomatic infectious

d2: Rate from exposed to symptomatic infectious
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* «: Recovery rate of asymptomatic individuals

* e: Recovery rate of symptomatic individuals

7: Hospitalization rate of symptomatic cases

§: COVID-19 mortality rate for symptomatic cases

w: COVID-19 mortality rate for hospitalized cases

* v: Vaccination rate of susceptible individuals

T: Rate of vaccine-induced protection

p: Rate of vaccine protection waning (return to susceptible)

* 7: Recovery rate of hospitalized individuals
The force of infection A is given by:

A=ﬁ<€;\?+%>.

The compartmental transitions are illustrated in Figure 2.1 and governed by the following
system of ordinary differential equations:

Zfzfl—vS—AS—yS+pV,

av

E-vS—(y+T+p)V,

Zf‘Z)\S—((Sl+(52+]/{)E,

”;‘? =6 E— (a+ A, (2.1)
%:52}3—(7+e+9+y)1,

= @+ pnH,

dt

%JzocA+eI+17H+TV—yP.

The system (2.1) is solved subject to the initial conditions:

((5(0)=Sp >0,
V(©0)=Vp >0,
E(0) =Eo > 0,
AQ0) = Ay >0, 2.2)
1(0)=1p > 0,
H(0) = Hp > 0,
P(0) = Py > 0.

In the following section, we analyze the qualitative behavior of this system.
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Figure 2.1: Flow diagram of the proposed SVEAIHP model

3 Model analysis

In this section, we focus on the qualitative properties of the system (2.1)(2.2), including the
analysis of the invariant set and stability. We aim to gain insights into how the system behaves
under various conditions and how it evolves over time.

3.1 Positivity and boundedness

In this context, the system pertains to populations; hence, we assume that all state variables
are non-negative at time t = 0. Additionally, all model parameters are assumed to be non-
negative. We define the set of all non-negative initial conditions satisfying a natural population
bound. Let U C R represent the feasible region.

U= {(S,V,E,A,I,H,P) €R’

IT

N < } . (3.1)
K

To establish the epidemiological significance of the model, it is crucial to demonstrate that

each variable of the model, when initialized with positive conditions as outlined in Equation

(2.2), remains non-negative for all time t > 0 within the feasible region described in equation
(3.1).

3.1.1 Positivity of the solution

Using the initial conditions given in Equation (2.2), we demonstrate that the model’s solutions
S(t), V(t), E(t), A(t), I(t), H(t) and P(t) are non-negative for all time ¢ > 0.
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Lemma 3.1 (Positivity of Solutions). If the initial conditions satisfy S(0) > 0, V(0) > 0, E(0) > 0,
A(0) > 0, I(0) > 0, H(0) > 0,and P(0) > 0, then the corresponding solutions S(t), V(t), E(t), A(t),
I(t), H(t), and P(t) of the system remain strictly positive for all time t > 0.

Proof. Suppose, by contradiction, that the solution of the model (2.1) is not strictly positive for
all t > 0. Then, there exists a first time t* > 0 such that

F =inf {t > 0 | min{S(t), V(t), E(t), A(t), I(t), H(t), P(t)} = 0}

Without loss of generality, assume S(t*) = 0. By the definition of t*, for all t € (0, t*), we have
S(t) >0, V() >0, E(t) >0, A(t) > 0, I(t) > 0, H(t) > 0, P(t) > 0. Since S(t) reaches zero at t*
from positive values, it attains a minimum at t*. If S(t) is differentiable at t*, then

s <o,
dt |, =

However, from the first equation in (2.1), we have

Z—le‘[—vS—AS—yS+pV.

At t =t*, since S(t*) = 0 and all parameters are positive, it follows that

d—s =11>0,

dat |,_s

which contradicts the earlier deduction that %\H*g 0. Hence, S(t) > 0 for all t > 0. By
applying similar reasoning to V(t), E(t), A(t), I(t), H(t), and P(t), we conclude that all state
variables remain strictly positive for all + > 0. Therefore, the solution of (2.1) remains in R
forall t > 0. O

3.1.2 The invariant region

We now establish that the solutions of the model (2.1) are bounded and remain in the positive
orthant for all ¢+ > 0. To achieve this, we show that the biologically feasible region defined in
(3.1) is positively invariant with respect to the dynamics of the system.

Lemma 3.2 (Boundedness and Invariant Region). Let the initial conditions satisfy S(0) > 0,
V() > 0, E(0) > 0, A(0) > 0, I(0) > 0, H(0) > 0,and P(0) > 0. Then the total population
N(t) = S(t) + V() + E(t) + A(t) + I(t) + H(t) + P(t) satisfies

IT
limsup N(t) < —.
t—o0 “l/l

Moreover, the region

U= {(S,V,E,A,I,H,P) € R’

vl
I

is positively invariant with respect to the dynamics of the system (2.1). That is, any solution starting
in U remains in U for all t > 0.
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Proof. Recall that the total human population is given by
N(t) = S{t)+ V(t)+ E(t) + A(t) + I(t) + H(t) + P(¢).
Differentiating N(t) along the solutions of the system yields

dN
—— =I1—-uN -6l — wH.
dat N «
Since all state variables are non-negative by the positivity result established in 3.1, and since

0,w > 0, we observe that

dN
— << — .
o ST—uN

Now consider the comparison differential equation

‘% =T1—uZ, Z(0)= Np.

The solution to this linear ODE is

Z(t) =

=3

(1—e ") + Noe ™.
Since N(t) < Z(t) for all t > 0, it follows that

N(#) < I: (1—e ") + Noe ™.
Taking the limit as t — oo, we find

limsup N(t) < I:

t—o0

Therefore, all solutions of the model remain bounded above by %, and since each compart-
ment is non-negative, we conclude that the solutions remain in the set 3.1 for all + > 0. Hence,
the region U/ is positively invariant and attracting. In summary, the model is well-posed both
mathematically and epidemiologically, and its solutions remain bounded and biologically
meaningful within the region U. o

3.2 Equilibria and stability

In this section, we present the equilibrium points. We obtain the equilibrium points by setting
the right-hand side of equations (2.1) to zero. We first find the disease-free equilibrium point.
The disease-free equilibrium (DFE) is a point where there is no disease in the population, i.e.,
E=A=1=H =0. The DFE point is given by ¢’ = (S°, V?, 0, 0, 0, 0, P?), where,

Q0 II(p+7t+p) 0_ Iy
pp+T+p)+v(p+ 1) pp+T+p)+v(p+1)
0 ITtv

u((p(p+t+p) +v(p+1))
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3.2.1 The basic reproduction number

To calculate the basic reproduction number, we use the next generation matrix as discussed by
Van den Driessche and Watmough [25]. We set vector F of rate of appearance of new infec-
tions from classes (E, A, I) and vector V the net rate of transfer out of infected compartments.

AS (01+02+n)E
F=10], V= (o +)A —5E
0 (y+e+0+u)l —5E
Computing the Jacobians of F and V at the DFE, we get
0 BS*- &L pS*- &2 Si+6+u 0 0
F=1]0 0 0 , V= -1 o+ 0
0 0 0 —dn 0 Y+e+0+u

To calculate the basic reproduction number R, we seek the spectral radius of the next gen-
eration matrix G = FV~!. Hence, the expression for Ro. Let a; = 1+ +y, a2 = o+ and
a3 =y +€+0+u. Then

1 * 6 0 S* s*
A A N L J CRR O I SR
V= = ﬂ?z E (1) = FV = 0 0 0
m 0% 0 0 0
So the dominant eigenvalue is given by
G101 {26 >
R = K- + ’ 32
0=Fp <((51+52+;4)(0c+y) 1+ +u)(y+e+0+p) (3.2)
where x = (p+7+p) . (3.3)
pp+T+o) +v(p+71)

The factor x accounts for the effects of vaccination. The vaccination factor represents the pro-
portion of the population that remains susceptible at the disease-free equilibrium. It captures
how vaccination reduces the number of fully susceptible individuals. The factor incorporates
the key parameters related to vaccination: the vaccination rate v, vaccine-induced immunity
T, and the waning of vaccine protection p. The parameters are modulated by the natural death
rate y. When the vaccination rate v increases, the proportion of susceptible individuals de-
creases, reflecting the protective effect of vaccination. Hence, this factor directly reduces the
basic reproduction number Ry, quantifying the impact of vaccination on disease transmission.
When no vaccination is implemented v = 0, the expression simplifies to 1/, indicating that
the entire population is susceptible. Hence, the model without the vaccination compartment
whose adjusted R is denoted as R;"*

Rnovuc:5.< 0101 4 (202 >
P \Grra ety @b rp(y et

The basic reproduction number, R, is defined as the average number of secondary infections
generated by a single infected individual introduced into a completely susceptible population
during their life cycle. The basic reproduction number R indicates a threshold condition that
the disease will be eradicated if Ry < 1; however, if Rg > 1, then the disease will persist. The
disease-free equilibrium of the proposed models is locally asymptotically stable if Ry < 1.
Biologically, this means that each infected individual produces, on average, fewer than one
new infection , so the disease cannot sustain itself in the population.
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3.2.2 Global stability of the disease-free equilibrium point

We study the global stability of the DFE using the method introduced by Castillo-Chavez et
al. [4]. Consider a system of ordinary differential equations of the form

& = F(x,Y),
2 = G(x,Y), G(x,0) =0,

where x € R represents the uninfected classes and Y € R* denotes the number of infected in-
dividuals, which includes the exposed and the two infectious classes and the hospitalizations.
G(x,0) = 0, meaning that there is no infection when Y = 0. Let the point ¢ = (x*,0) denote the
disease-free equilibrium point of the system (2.1) with 0 representing the zero vector and x*
denoting the steady-state value of the uninfected compartments when no disease is present.

Theorem 3.3 (Global Asymptotic Stability of DFE). The disease-free equilibrium ¢° = (x*,0) is
globally asymptotically stable in the biologically feasible region U C R3* if the following two condi-
tions are satisfied

(H1) The subsystem % = F(x,0) has x* as a globally asymptotically stable equilibrium.
(H2) The function G(x,Y) can be written in the form:
G(x,Y) = AY — G(x,Y), with G(x,Y)>0inl,
where A = g—g 0 is a Metzler matrix (i.e., its off-diagonal entries are non-negative), and U is
the biologically meaningful region.
Moreover, this holds when the basic reproduction number satisfies Ry < 1.

Proof. First, we rewrite model (2.1) by partitioning into uninfected and infected compartments

x=(S,V,P)" andY =(E I A H)".

Then, let the DFE be ¢ = (x*,0) = ( Huerep) Iy

I
p(p+T+p)+v(p+7) 7 p(u+THe)+(U+7)” u(u(wﬂg)vﬂf(wr))) and the

system ‘fi—’t“ = F(x,0) becomes

d—sz—(v+y)S+pV,
‘%/ =vS—(u+t+p)V,
L =1V —up,

The condition H1 is satisfied. The system is linear and has a unique equilibrium, x* =
(%, V*,R*). All the eigenvalues of the coefficient matrix have negative real parts; hence,
the equilibrium x* is globally asymptotically stable in the absence of infection. To examine
H2, recall that the dynamics of the infected compartments are given by

Y R
Calit =G(x,Y) =AY — G(x,Y),
where
—(61+ 62+ 1) 0 0 0
A= 01 —(+p) 0 0
a 5 0 —(y+e+0+p) 0 ’

0 0 0% —(w+u+n)
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is the Jacobian of G evaluated at the DFE, and

BS (6111;15212)

G, Y) = 0 >0,
0
0
for all x,Y € U, and all parameters and variables are non-negative. Since A is a Metzler
matrix with strictly negative diagonal entries and G(x,Y) > 0 in U, condition (H2) is also
satisfied. Therefore, we conclude that the disease-free equilibrium is globally asymptotically
stable whenever Ry < 1. O

The condition Rg < 1 plays a crucial role in ensuring that the disease-free equilibrium
(DFE) is the only possible long-term behavior of the system.

3.2.3 Global stability of the endemic equilibrium point

In this section, we consider the endemic equilibrium point of the system (2.1)). The endemic
equilibrium is a point in the system at which the disease persists within a population. For an
endemic equilibrium point (S*, V*, E*, A*, I*, H*, P*) to exist, at least one of E* or A* or
I* must be nonzero. To find the endemic equilibrium point, we assume that E(t) # 0, A(t) #
0, I(t) #0, H(t) # 0, hence, ¢* = (S*, V*, E*, A*, I*, H*, P*)T. We solve the system
IT—vS* —A*S* —uS* +pV* =0,
vS* —(u+Tt+p)V* =0,
AS*+—(61+ 62+ WE* =0,
ME" —(a+u)A* =0, (3.4)
WE +(y+e+0+u)I* =0,
yI* —(w+u+n)H" =0
(A" +el" +yH* +TV* — uP* = 0.

where BLA* POl
« _ bG1 2
A= (3.5)
and using the expression for Ry we obtain
(o _ (p+7+p)II
(up+t+p)+v(p+1)Ro’
. vl
(p(p+T+p)+v(p+1)Ro’
g H(Ro—1)
(01+0+ )Ry’
« I161(Ro — 1)
= , 3.6
(a+m)(61+0+1)Ro (3.6)
. [16(Ro — 1)
C(y+e+ 0+ + 0+ Ry
* 7H§2(R0 - 1)
(+pu+w)y+e+0+u)(d1+o+1)Ro’
P - xA*+el* +nH* +TV*
" .
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From the third, fourth and fifth equations of (3.6), we notice that the biologically meaningful
endemic equilibrium state exists if and only if Ryp > 1. We claim and prove that endemic
equilibrium point is globally asymptotical stable.

Theorem 3.4. The COVID-19 model (2.1) has a unique positive endemic equilibrium whenever Ry >
1, which is globally asymptotically stable.

Proof. Consider the following Lyapunov function:
LS, V,E, A, I, H =S-S5 IS)+(V—-V*InV)+a,(E—E*InE)+a(A— A"In A) (3.7)
+as(I— I"Inl)+as (H — H InH),

where a4, a5, a3 and a4 are non-negative constants to be determined. By differentiating (3.7))
we obtain

aL) (SN ds VIV AY (B (1oAY A (D 4
i\~ s )dt v)ar T UTE) @) TP T a5

+a 1—H—* d—H
4 H) at’

Substituting (2.1) we get

dL(H) s v
— = <1—S> (IT—vS—AS—uS+pV) + (1—V> (VS —(u+T+p)V)
E* A*
+aq (1— E> (/\S—((S1+(52+]4)E) + ap <1 — dt) ((51E—(D€+}1)A)
+ a3 (I—II> (0E—(y+e+0+u)l) +ay <1—Z) (vI — (w+pu+n)H)
= [IT—vS —AS —uS+pV] + [—HSS+(1/+y) S*+/\S*—pVi}

*

+[VS—(u+T+p)V] + |:—1/S“// +(y+T+p)V*] +a1 [AS — (61 + 62 + W)E]

*

+a; —AS% + (61 + 62+ y)E*} +ay [61E — (a+ p)A]

*

+a —51E% — (a+ y)A*] +0a3 [0E — (y+e+0+ )]

* *

+a3 —52EII+(')/+€+9+;4)I*} +ag [y —(w+p+n)H| +ay [—71H+(w+y+17)H* .

H
(3.9
Re-arranging, we obtain
%: M1+ (v4p)S*+ (t+p+u) Vi+tar (1+6+u) E +ay (a+p) A +az (y+e+0+u) I*

_ B&1AS  BGaIS

+ag (n+w+u) H| — uS

N N
St BLIAST  BOIST ST s BC1AS
PV =T+ 22—+ = PV (t+p+u)V vSV+a17N
IS ASE* ISE*
+a1‘5%1 —a1(51+52+y)E+a1ﬁglNE +ﬂ1ﬁ%\]E + a6 E —ay (w+p) A

* * *

—a251%+a35215—a3(’y+e+9+y)I—a352%+a4'yl—a4(17+w+y)H—a4'yﬁ

=C—-Ci(h, u, w, x, y, 2).
(3.10)
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1%

For simplicity of notation, denote w = %, X = 5, U= %, z = %, y = Ii*, h = I
let C =TI+ (w+u)S*+(t+p+u) V' +a; (01+0+u)E  +ax(a+pu) A" +az(y+e+0+u)I*

+ay (1 +w + p) H*. Then we rewrite (3.10)) as

dL(t) _ _Vs*w_ﬁglASwz_[%CZISwy+pv*x_H1 ,B§1A52+,3§215y_pv*£

dt N N v N N w
LW A*S*wz I*S*w
VS ;JralﬁCl x +a1/3C2 N Yy

—(t+p+p) Vix — —ay (61 + 62+ p) E'u

BL1A*Swz  PLI*S* ) . 1 )
+a N o + a0 E*u—ap (w+p) A Z—a2512+a352E u

—a3(y+e+0+p) I*y—a3§2;+a471*y—a4 (n+w+p) H*h—an%.

(3.11)

We want to choose the suitable constants a; < 0 for (i = 1,2, 3,4) so that the derivative of the
function L(S, V, E, A, I, H) is negative definite or semi-definite. We follow the method used in
[16] and rewrite the derivative of function L(S, V, E, A, I, H) with constants a; > 0 (i =1,2,3,4)
in the following form

K

de (”k —8k1 " 8k2 T gk,nk) , (3.12)
k=1

where d > 0,(k=1,2,...,K), gk, is an expression only including multiplication and division
of elements in the set I' such that the product of g ;s is unity. We define a set I' of by

N =

w
X

7 7 4 7

u u

SRS

1
7 /Y
w

u
y

such that we have a total of five cases,

o LV [ w 1wz w) 1w oywl fxow
/w/wlxl leulzlwlylu/wlx‘

We rewrite expression (3.12) as

dl(z_w_1)+d2<z_x_W)+d3(3_1_w_x)+d4(3_1_W_“)+d5(3_1_”_
w w X w X w u Z w y

Suppose the right-hand side of (3.11) is equal to (3.13). We then equate the coefficients of like
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terms of these two expressions to obtain the following

(dl =+yS*,
dzsz*,
dz=(p+1) V",

€1A*S*
d4=€l17'8 1N

_ BeI*s”

_gliN

d1+d3+d4+d5:H,

dl +d2+d3+d4+d5 =C, (3.14)
d2+d3=1/5*,

1—(11 =0,

€15*
az(oc+y):%,

= a251E*,

ds = a36E",

,BezS*
N 4

a3 (y+e+0+u)=asy+

((51 + (52 + “l/l) = a2(51 + a3(52,

agyI* = 0.
Using the relationships given by
I[T=vS"+A*S" +uS* — pV*,
vS*=(u+t+p)V*,
A*S* = (01 + 02+ H)E,

(3.15)
HE" =(a+p)A*,
OE  =(y+e+0+ul”,
yI* =(w+p+n)H",
we obtain that
21 g = Br1S* 1 _ Bl A*S* e BL2S* 1 _ B I*S* 420
YTV TN (w+n) T NOE* 7T N (y+e+0+pu)  N&E* "t
and hence

=k =V, eV, dy = BT BT

This yields the derivative of L(S, V, E, A, I, H) as

dLt) _ oe(o_p_ L ifp_ X _W ifg_ 1 _w_
T—ys <2 w w>+pV (2 - x>+(y+r)V<3 x>

BaA™S (o 1wz w)\ BeI'ST/(. 1w yw
+ N 3 + N 3
<0.

Note that % =0when §* =S5, V* =V,E* =E,A* = A, I" = I, H* = H. Consequently, we
obtain by LaSalle’s invariance principle ¢* is globally asymptotically stable. This completes
the proof. |
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Table 4.1: A table showing the estimated parameter values used in model (2.1)
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Symbol Parameter description Value Source
IT Recruitment into the susceptible class 1No=653 day~! standard
Hu death rate m day~!  standard
v Rate of vaccination 0.025 day ! titted
T Fully protected individuals progressing to pro- 1/7 day~! fitted
tected class P class

0 rate of losing protection 0.03 day ! fitted

B transmission rate 0.98 fitted

01 Probability of infection through contact with 0.95 fitted
asymptomatic individuals

02 Probability of infection through contact with 0.93 titted
symptomatic individuals

3 Rate of progression from E to A 1/6 day~! fitted

02 Rate of progression from E to I 1/2 day~! fitted

o Progression from asymptotic class to protected 1/8 day ! fitted
class

€ Progression from symptomatic to Protected 1/8 day ! fitted
class

0% Progression from symptomatic I to hospital- 1/7 day~! fitted
ized H

0 COVID-19 induced death rate from I class 0.1 day ! titted

n Rate of progression from H to protected class 0.1 day ! titted
P class

w COVID-19 induced death rate from H class 1/9 day~! titted

In this section, we investigated the qualitative nature of model (2.1). We proceed to the next
section, where we estimate parameters, check their sensitivity with respect to the reproduction
number Ry, and perform simulations to understand the impact of our target parameters on
mitigating COVID-19.

4 Results analysis and discussion

4.1 Model validation

We fit the developed model to data to authenticate our model. We use the data for the
new cases of COVID-19 recorded between 14 February 2021 and 24 October 2021. The data
was extracted from [18]. To fit the model to the data, we adopt the Maximum Likelihood
estimation (MLE) algorithm implemented in the fitR package. The results of our fit are shown
in Figure 4.1, where the black dots represent the data points for weekly new cases of COVID-19
infections reported, and the red solid line is the model output. Table 4.1 shows the estimated
values for the parameters used in model (2.1).
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Figure 4.1: A figure showing the model fitted to the data between 14 February 2021 and 24
October 2021 of the COVID-19 pandemic in South Africa. The black-dotted line represents
the reported data for COVID-19 positive cases, whereas the red-continuous line shows the
goodness of fit. Parameter values used are as listed in Table (4.1) with reporting estimated to
be 13%.

4.2 Sensitivity analysis

We use sensitivity analysis to identify where we can improve our model performance and
design by identifying influential parameters and offering information regarding their quanti-
tative relationship with the model output. The parameters targeted in our research are those
bringing gain in the vaccinated class, and also those that create losses in the same class. But
some other factors are more important to Ry than the ones we are studying in this model. For
instance, the parameter § has the strongest positive correlation with Ry, but we will not dwell
on it much as we seek to identify how vaccination parameters manipulate the Ry. Note that,
when proposing intervention strategies to obtain the optimized results, it is advantageous to
target all influential parameters for manipulation in the introduction of intervention strate-
gies. This information is crucial for both the design of the model and data assimilation and
for reducing nonlinear complex models. We used the normalized forward sensitivity indices
of Ry to identify the influential models and used PRCC to quantify these findings as shown
in 4.2. A parameter with a positive index increases the value of Ry when it is increased, while
a parameter with a negative index decreases the value of Ry whenever it is increased.

The sensitivity analysis results indicate that increasing the following model parameters
would increase disease transmission potential: the probability of transmission S, the mortal-
ity rate y, the rate of susceptibility of vaccinated individuals p, the rate at which individuals
move from the exposed class to the asymptomatic class, J1, the rate at which hospitalized indi-
viduals recover is 7, and the disease transmission rates from asymptomatic and symptomatic
individuals are {; and {». On the other hand, increasing the following model parameters may
reduce disease burden: (i) rate of progression from asymptomatic class to recovered w; (ii)
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Figure 4.2: Sensitivity analysis of Rg to the model parameters.

transition from exposed to symptomatic infectious class &,; (iii) progression from vaccinated
class to protected class 7; and (iv) rate of vaccination of individuals v.

We aim to mainly understand the impact of vaccination. This understanding will help us
develop more effective public health strategies. In the next section, we focus on parameters
involved in the vaccination class and vary them to observe how they influence the spread of
COVID-19 in the population. We examine different scenarios to understand the influence of a
combination of controlling these parameters.

4.3 Model simulations and discussion

We performed numerical simulations of our proposed model to visualize the parameters that
most significantly influence the system’s behavior. Overall, simulations show that vaccines
are useful in reducing the risk of COVID-19 infection. We use the following initial conditions
S = 59893884, V = 22260, E = 14245, A = 17850, I = 16363, H = 3922, M = 93540. We first
analyze the parameter v, which shows a strong negative correlation with the basic reproduc-
tion number, as noted in 4.2. Figure 4.3 illustrates the impact of the rate of vaccination v on
the asymptomatic cases (A), exposed cases (E), hospitalized cases (H), and symptomatic cases
(I). In our simulations, we vary v with the values 0.09, 0.1, 0.15, and 0.3. We observed that
a sufficiently high vaccination rate can significantly reduce the number of cases in all four
compartments.

Vaccinated individuals will gain vaccine-induced protection at the rate of (1), thereby pro-
gressing to the protected compartment. We performed simulations to understand the effect
of the parameter 7, which informs us of the vaccine’s ability to protect individuals from in-
fection. Figure 4.4 shows how the four groups in the model (2.1) change when we adjust the
vaccination rate v and the vaccine’s effectiveness 7. Looking at Figure 4.4, we see that with
a faster protection rate of T = 1/7, which means it takes an average of 7 days to be fully
protected, the peaks are a bit lower than with a slower protection rate of T = 1/28. The differ-
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SVEAIHP Model Dynamics Over Time
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Figure 4.3: Effect of vaccination rate, v = [0.09, 0.10, 0.15, 0.30].
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Figure 4.4: Effect of low vaccination rate (v = 0.10) and time to full protection (t =
[1/7,1/14,1/21,1/28]).

ences between T values are relatively small compared to the differences between v values (see
Figure 4.5). Vaccination rate v has a much stronger impact than the rate of gaining protection
7. Increasing the vaccination rate is more effective in reducing peak infections than worrying
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about the rate of full protection. However, varying T shows that improvements will suffice
when 7 is moved from extremely slow T = 1/28 to moderate T = 1/14 protection develop-
ment. However trajectories do not differ much. This is observed in the sensitivity analysis

SVEAIHP Model Dynamics Over Time
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Figure 4.5: Effect of high vaccination rate (v = 0.30) and time to full protection (T =
[1/7,1/14,1/21,1/28]).

where the parameter T has a weak negative correlation with R¢. Figure 4.5 demonstrates
the trajectory of four of the seven classes of model (2.1) when the measure of vaccination is
increased to v = 0.3 and the measure of vaccine protection T values are varied as before. The
simulations reveals that when the vaccination rate is high, the number of infections will be
reduced, however, the rate at which the vaccine will confer protection does not significantly
affect the trajectories when the vaccination rate is kept constant. Hence, improving the rate
at which the vaccine confers protection may not necessarily improve the control strategy, but
increasing the rate of vaccination may help to control the disease. The trajectories we observe
as a result of varying the factor T remain close to each other, meaning that this parameter does
not significantly impact the time taken to reach the disease-free equilibrium if the vaccination
rate remains constant.

We further simulate the vaccination rate v against the rate at which the vaccinated become
susceptible p. The trajectories from the simulation are observed in Figure 4.6. We observe
the impact of a low vaccination rate, for instance, v = 0.15. The results indicate that the rate
at which the vaccinated individuals lose protection and become susceptible again increases
the number of in the exposed E, asymptomatic A, symptomatic I and hospitalized H classes.
For instance, when the vaccinated individuals lose protection in seven days, the infections are
surge. We examine the simulations in Figure 4.6 when the vaccination rate is low, v = 0.1.
In all compartments A, E, H, and I, a faster loss of protection p = 1/30 exhibits noticeably
higher peaks. Much lower peaks are seen for slower loss of protection p = 1/120. The higher
vaccination rate v = 0.30 shown in Figure 4.7 results in lower peak values in all compartments
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Figure 4.6: Effect of low vaccination rate (v = 0.10) and time to loss of protection (p =
[1/30,1/60,1/90,1/120]).
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Figure 4.7: Effect of high vaccination rate (v = 0.30) and time to loss of protection (p =

[1/30,1/60,1/90,1/120]). The high rate of vaccination offsets the impact of the rate at which
the vaccinated lose protection.

compared to the plot with v = 0.1. Peaks are reduced by about 50%. The difference in
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the trajectories due to loss of protection in Figure 4.7 is not as noticeable as it is at lower
vaccination rates in Figure 4.6. In both scenarios, a rapid loss of protection with p = 1/30
results in higher peaks. Trajectories for slower loss rates p = 1/60,1/90,1/120 in Figure 4.7 are
remarkably similar, with few deviations. Thus, high vaccination coverage reduces the effect of
protection durability, countering the damage caused by the loss of the vaccine’s protectiveness.
We observe that when a vaccine takes less time to wane, it means more individuals will be
protected. Hence, there will be fewer susceptible individuals, and in turn, this reduces the
exposed and the infectious.

The analysis of the parameters v, p, and T has revealed the influence played by these
parameters in considering vaccination as a control strategy. The most important parameter
in consideration is the rate of vaccination. But it’s vital to study how quickly the vaccinated
become vulnerable before they are fully protected from the virus. Rate of protection loss p has
strong effects, possibly even greater than that of the vaccination rate when the vaccination rate
is too low. Regardless of the vaccination rate, rapid loss of protection p = 30 days significantly
worsens the epidemic. However, long-lasting protection p = 120 days significantly reduces the
size of an epidemic. Over time, a high vaccination rate becomes crucial in safeguarding the
population against the effects of protection loss. When the vaccination coverage is high, the
returns for protection durability decrease.

Where high vaccination coverage is not possible, durability of the vaccine and coverage
should be given equal weight in vaccine development. However, a successful approach would
be a combination of high vaccination rates and long-lasting protection. When v = 0.1,p =
120 days, we observe moderate peaks. At v = 0.30,p = 30 days, we observe slightly lower
peaks, but the lowest peaks occur when v = 0.30,p = 120 days. This demonstrates that
the main factor influencing the success of epidemic control is vaccination rate. The biggest
benefit comes from attaining high v, so prioritize vaccination coverage first. However, in low
vaccination coverage, protection durability is also important, i.e., at low v, p becomes crucial.
we emphasise that durability is less important at high coverage. The best result is achieved
with practical feasibility when high coverage and reasonable durability are combined.

5 Conclusion

We formulated a deterministic mathematical model to investigate the impact of vaccination
on the disease dynamics of COVID-19. We calculated the disease-free equilibrium and com-
puted the basic reproduction number. We quantified the impact of vaccination. We calculated
the basic reproduction number Ry = 4.8 without vaccination; however, when we included
vaccination, the basic reproduction number became R = 2.2. This agrees with the theoretical
findings that the vaccination factor x reduces the reproduction number. Sensitivity analysis of
the basic reproduction number was carried out, and it was established that parameters v, B,
and y were key in the reduction of COVID-19.

Our model aimed to understand the impact of vaccination; hence, we mainly focused on
three parameters related to vaccination: v, p, and 7. The simulation results reveal that the
vaccination rate is key to controlling COVID-19. However, we established that identifying
an optimum vaccination rate will be ideal in the control of COVID-19 infections through
vaccination. However, where resources are a limiting factor, it is important to also understand
the rate at which the population loses protection after vaccination. A faster rate of loss of
protection will negate the impact of vaccination. A deeper dive into the impacts of the specific
vaccines could have given a clearer picture of the performance of the different parameters. A
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study like this can be useful for policymakers in determining the rate at which vaccines can
be administered to the target population, and in determining the choice of vaccine to consider
whenever vaccines may have different specifications.
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