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Abstract. Root-finding in nonlinear equations is a fundamental problem in numerical
analysis with applications in mathematics and engineering. Traditional methods like
the Bisection and False Position methods have been widely used, but they often face
challenges related to convergence speed, stability, and computational efficiency. This
paper presents two novel numerical root-finding methods that combine the robustness
of the Bisection method with the efficiency of the False Position method, improving both
convergence rates and stability. Furthermore, we illustrate some numerical applications
to discuss error analysis, convergence analysis, and comparisons with existing methods.
These findings contribute to the advancement of numerical computation by providing
more reliable and efficient root-finding techniques.

Keywords: Root-finding Techniques, Bisection method, False-Position Method, Modi-
fied Root-finding Methods, Numerical Algorithms.
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1 Introduction

Numerical root-finding is a fundamental problem in computational and applied mathematics.
It involves identifying the roots (or solutions) of equations of the form f (x) = 0, where f (x)
is a continuous function. Although analytical methods exist for solving such equations, they
are typically limited to simple or specific forms. The significance of numerical root-finding
lies in its ability to handle complex, nonlinear equations that arise across various domains.

BCorresponding author. Email: sanjulaprsan@gmail.com

https://doi.org/10.58205/jiamcs.v5i1.1921
http://jiamcs.centre-univ-mila.dz/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.centre-univ-mila.dz/?lang=en
https://orcid.org/0009-0000-6544-5543
https://orcid.org/0009-0002-9085-9996
https://orcid.org/0009-0005-3575-048X
https://orcid.org/0009-0008-1279-9688
https://orcid.org/0009-0000-0378-2851
https://mathscinet.ams.org/msc/msc2020.html


170 H.H.D. Kumara, A.G.S. Shanika, H.S. Gayashani, W.U. Imeshan, D.G.S.P. Thilakarathne

For example, in engineering, it is used to determine equilibrium points in structural analysis
[18], [17]. In finance, it assists in calculating interest rates and investment returns [9], [2].
In machine learning, root-finding algorithms are used during the training phase of neural
networks [19], [15].

Over the years, numerous numerical root-finding methods have been developed, each
tailored to specific types of functions and computational requirements. Among the most
widely used methods are the Bisection method [16], the Newton-Raphson method [14], the
Secant method [5], the False Position method [13], Broyden’s method [7], and the Fixed-point
Iteration method [3]. Additionally, researchers in [1] introduced a new method for finding
roots of nonlinear equations using decomposition techniques.

This study aims to explore whether combining the Bisection method with the False Po-
sition method can create a root-finding technique that is both faster and more reliable. Tra-
ditional methods often struggle with slow convergence or stability issues, especially when
dealing with nonlinear equations. By integrating the strengths of both approaches, this re-
search seeks to overcome these common problems and offer a better solution for finding the
roots of equations.

The Bisection method is a simple and reliable technique that guarantees convergence to a
root within a specified interval by repeatedly halving the interval. However, its convergence
type is linear (order of convergence = 1), making it relatively slow for high-precision ap-
plications [16], and inefficient for functions with steep gradients or multiple roots. The False
Position method improves upon the Bisection method by using linear interpolation to estimate
the root, often resulting in faster convergence. Nonetheless, its convergence is also linear in
most cases and is highly dependent on the nature of the function and the initial guesses [6].
These limitations make both methods less effective when used individually. This motivates
the development of new numerical root-finding approaches that combine the strengths of
both methods to achieve improved performance and reliability. Based on the strengths and
weaknesses of the Bisection method and the False Position method, we hypothesize that their
combination can lead to a more robust and efficient approach. The Bisection method is known
for its stability, whereas the False Position method typically offers faster convergence. By
merging these characteristics, we aim to enhance overall performance in terms of both speed
and accuracy. This concept forms the foundation for the two novel root-finding approaches
proposed in this study.

In this paper, we propose two novel numerical root-finding approaches that combine the
robustness of the Bisection method with the efficiency of the False Position method. These
approaches offer improved convergence rates and enhanced stability. They are particularly
well-suited for solving a wide range of nonlinear equations, making them versatile tools for
various applications. All calculations, simulations, and analyses in this study were performed
using MATLAB and R. The use of MATLAB and R facilitates rapid prototyping and iterative
refinement of the proposed approaches, allowing efficient exploration of parameter spaces
and convergence behavior. Furthermore, MATLAB’s built-in debugging and profiling tools
facilitated the optimization of the algorithms’ computational efficiency.

The remainder of this paper is organized as follows: In the next section, we present the
methodology, detailing the algorithmic steps and theoretical foundations of the proposed
approaches. Section 3 focuses on error analysis, convergence analysis, and comparisons with
existing methods, supported by several numerical examples. Finally, we conclude the paper
by addressing future research directions. Through this work, we aim to contribute to the
ongoing advancement of numerical root-finding methods by providing practical and efficient
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solutions for solving complex equations.

2 Methodology

This section presents the numerical methods employed in this study, including the Bisec-
tion method, the False Position method, and two modified algorithms that combine these
approaches in distinct ways. The notations used throughout the section are defined below.

f (x) – The continuous function on [a, b] for which we seek to find the root.

a – Lower bound of the interval where the root is sought.

b – Upper bound of the interval where the root is sought.

c – Estimated value calculated using the False Position method.

mid – Mid value of the interval [a, b].

iter – Next iteration value.

f (iter) – Function value at the current iteration.

tol – Tolerance level for convergence.

i – Index.

root – Final approximated root.

2.1 Bisection method

The Bisection method is a bracketing technique for root finding in continuous functions, based
on the Intermediate Value Theorem [3]. The method starts with an interval where the function
changes sign, guaranteeing the existence of at least one root within that interval [4]. The
interval is then iteratively bisected, and the midpoint is evaluated as a potential root. The
subinterval containing the sign change is chosen for the next iteration. This process continues
until the root is approximated within a specified tolerance.

2.1.1 Bisection method algorithm

The Bisection method is a fundamental iterative technique used to find the roots of a contin-
uous function f (x) over a given interval [a, b], where f (a) and f (b) have opposite signs, i.e.,
f (a) · f (b) < 0. This condition, as ensured by the Intermediate Value Theorem, guarantees
the existence of at least one root within the interval. The method operates by repeatedly halv-
ing the interval and selecting the subinterval that contains the root based on the sign of the
function at the midpoint [4]. The iterative process of the Bisection method can be described
as follows:

midn =
an + bn

2
.

Here, an and bn denote the endpoints of the interval at the n-th iteration, and midn is the
midpoint. If f (midn) = 0, then midn is the exact root. Otherwise, the interval is updated as
follows:



172 H.H.D. Kumara, A.G.S. Shanika, H.S. Gayashani, W.U. Imeshan, D.G.S.P. Thilakarathne

{
[an, midn], f (an) · f (midn) < 0,

[midn, bn], otherwise.

The iterations continue until the interval length satisfies the stopping criterion:

|an − bn| < ϵ,

where ϵ is a predefined tolerance.
The Bisection method guarantees convergence as long as the function is continuous and

the initial interval satisfies the sign-change condition. Its convergence is linear, and the error
after n iterations can be expressed as:

|midn − r| ≤ b − a
2n ,

where r is the actual root and [a, b] is the initial interval.
The algorithm can be summarized as follows:

Step 1: Initialize fiter = 1, iter = 1, i = 1.

Step 2: Calculate f (a) and f (b).

Step 3: mid = (a + b)/2.

Step 4: Update iter = mid and fiter = f (iter).

Step 5: If f (iter) = 0 or | fiter| < tol, then go to Step 8.

Step 6: If f (a) · f (iter) ≤ 0, update b = iter; otherwise, a = iter.

Step 7: i = i + 1, and go to Step 3.

Step 8: Stop iteration and output, root = iter.

2.2 False Position method

The False Position method is another bracketing technique for root finding, similar to the
Bisection method, but it employs linear interpolation to estimate the root. Although typically
faster than the Bisection method, the False Position method may fail to converge if the function
values at two consecutive approximations are identical [12], [5]. Furthermore, if the secant line
becomes tangent to the given nonlinear function at any step, the method may stagnate and
fail to converge to the root [12].

2.2.1 False Position method algorithm

Consider a continuous function f (x) defined on an interval [a, b] where f (a) · f (b) < 0, ensur-
ing that at least one root exists in the interval for the equation f (x) = 0. Unlike the Bisection
method, which uses the midpoint, the False Position method estimates the root by computing
the intersection point of the secant line connecting the points (a, f (a)) and (b, f (b)). Once
the first approximation c is obtained, the method proceeds by updating the interval based on
the sign of f (c). Specifically, either (a, f (a)) or (b, f (b)) is replaced with (c, f (c)), depending
on where the sign change occurs. The iterations continue until f (c) is within a predefined
tolerance.

The algorithm can be summarized as follows:
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Step 1: Initialize fiter = 1, iter = 1, i = 1.

Step 2: Calculate f (a) and f (b).

Step 3: c = f (a)·b− f (b)·a
f (a)− f (b) .

Step 4: Update iter = c and fiter = f (iter).

Step 5: If f (iter) = 0 or | fiter| < tol, then go to Step 8.

Step 6: If f (a) · f (iter) ≤ 0, update b = iter; otherwise, a = iter.

Step 7: i = i + 1, and go to Step 3.

Step 8: Stop iteration and output, root = iter.

2.3 Newton’s method

The Newton-Raphson method is one of the most powerful numerical methods for solving
a root-finding problem of the form f (x) = 0 [4]. It is based on the concept of successive
linearization, in which a complex nonlinear problem is transformed into a sequence of simpler
linear problems. The solutions of these linear problems iteratively converge toward the root
of the original nonlinear equation [8]. Unlike the Secant method, which uses two initial points
to construct a secant line, Newton’s method requires only a single initial guess and uses the
tangent line at that point to estimate the root. This method relies on the derivative of the
function.

2.3.1 Newton’s method algorithm

Let x0 ∈ [a, b] be a suitable initial approximation to the root such that f ′(x0) , 0. Here, f ′(x0)

denotes the first derivative of the function f (x) at x0, and c′ represents the estimated root
obtained using Newton’s method.

The algorithm can be summarized as follows:

Step 1: Initialize fiter = 1, iter = 1, i = 1.

Step 2: Calculate f (x0) and f ′(x0).

Step 3: c′ = x0 − f (x0)
f ′(x0)

.

Step 4: Update iter = c′ and fiter = f (iter).

Step 5: If f (iter) = 0 or | fiter| < tol, then go to Step 8.

Step 6: Update x0 = iter.

Step 7: i = i + 1, and go to Step 2.

Step 8: Stop iteration and output, root = iter.
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2.4 Modified methods

To leverage the strengths of both the Bisection method and the False Position method, two
novel algorithms were developed for computing the roots of nonlinear equations. These algo-
rithms combine the reliability of the Bisection method with the faster convergence of the False
Position method in two distinct ways.

2.4.1 Modified algorithm 1 (BF approach)

The procedure begins by selecting an initial interval [a, b] such that f (a). f (b) < 0, ensur-
ing the existence of at least one root within the interval. The midpoint of this interval,
mid = (a + b)/2, is then computed. Based on the sign of the function at the midpoint,
the interval is updated to either [a, mid] or [mid, b]. Subsequently, the False Position method
is applied to the updated interval to obtain the first approximation (c). If c satisfies the con-
vergence criterion, either f (c) = 0 or | f (c)| < ϵ, then c is accepted as the root. Otherwise, the
process is repeated by updating the interval and reapplying the same steps until the desired
level of accuracy is achieved. Figure 2.1 illustrates the first iteration of the BF approach.

Figure 2.1: First Iteration of Modified Algorithm 1 (BF Approach)

Key features:

• Interval refinement: The Bisection method is used to refine the interval [a, b] and ensure
the root is bracketed.

• Root estimation: The False Position method is used to estimate the root within the
refined interval.

• Tolerance check: The algorithm terminates when the function value at the estimated
root is within the specified tolerance tol.

The algorithm can be summarized as follows:



Modified root-finding approaches: Introduction and comparative Study 175

Step 1: Initialize fiter = 1, iter = 1, i = 1.

Step 2: Calculate f (a) and f (b).

Step 3: mid = (a + b)/2.

Step 4: If f (b). f (mid) < 0, set a = mid; otherwise, b = mid.

Step 5: c = f (a)·b− f (b)·a
f (a)− f (b) .

Step 6: Update iter = c and fiter = f (iter).

Step 7: If f (iter) = 0 or | fiter| < tol, then go to Step 10.

Step 8: If f (a) · f (iter) < 0, update b = iter; otherwise, a = iter.

Step 9: i = i + 1, and go to Step 2.

Step 10: Stop iteration and output, root = iter.

Figure 2.2 presents a detailed flowchart illustrating the complete implementation of the
algorithm.

2.4.2 Modified algorithm 2 (FB approach)

The procedure begins by selecting an initial interval [a, b] such that f (a). f (b) < 0, ensuring
the existence of a root within the interval. Next, the intersection point c of the secant line
connecting the points (a, f (a)) and (b, f (b)) with the x-axis is computed, as in the False Po-
sition method. Based on the sign of the function at c, the interval is updated to either [a, c]
or [c, b]. The first approximation is then obtained by calculating the midpoint (mid) of the
updated interval, similar to the Bisection method. If mid satisfies the convergence criterion,
i.e., f (mid) = 0 or | f (mid)| < ϵ, it is accepted as the root. Otherwise, the process is repeated
by updating the interval and reapplying the same steps until convergence is achieved. Figure
2.3 illustrates the first iteration of the FB approach.

Key features:

• Interval refinement: The False Position method is used to refine the interval [a, b] and
ensure the root is bracketed.

• Root estimation: The Bisection method is used to estimate the root within the refined
interval.

• Tolerance check: The algorithm terminates when the function value at the estimated
root is within the specified tolerance tol.

The algorithm can be summarized as follows:

Step 1: Initialize fiter = 1, iter = 1, i = 1.

Step 2: Calculate f (a) and f (b).

Step 3: c = f (a)·b− f (b)·a
f (a)− f (b) .
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Figure 2.2: Steps of Modified Algorithm 1 (BF Approach)
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Figure 2.3: First Iteration of Modified Algorithm 2 (FB Approach)

Step 4: If f (c) · f (b) < 0, set a = c; otherwise, b = c.

Step 5: mid = (a + b)/2.

Step 6: Update iter = mid and fiter = f (iter).

Step 7: If f (iter) = 0 or | fiter| < tol, then go to Step 10.

Step 8: If f (a) · f (iter) < 0, update b = iter; otherwise, a = iter.

Step 9: i = i + 1, and go to Step 2.

Step 10: Stop iteration and output, root = iter.

Figure 2.4 presents a detailed flowchart illustrating the complete implementation of the
algorithm.

2.5 Convergence rate estimation

Assume that r is the exact root and xn is the nth approximation of the equation f (x) = 0. The
absolute error at the nth iteration is given by:

en = |xn − r|.

The error at the (n + 1)th step should satisfy the following condition:

en+1 = Cep
n,
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Figure 2.4: Steps of Modified Algorithm 2 (FB Approach)
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where p is the order of convergence and C is a constant that depends on the method and the
function.

The error at the nth step is given by:

en = Cep
n−1.

From equations (1) and (2),
en+1

en
=

ep
n

ep
n−1

.

Taking ln of both sides,

p ≈
ln

(
en+1

en

)
ln

(
en

en−1

) .

This relation, denoted as equation (3), can be used to estimate the stepwise convergence
rate of an iterative method [10].

3 Results and discussion

This section describes the traditional root-finding methods-Bisection, False Position, and Newton-
Raphson as well as the newly proposed FB and BF approaches. These methods are analyzed
and compared using two arbitrary equations and two engineering applications. The accuracy
and efficiency of each method are evaluated using established root-finding criteria. All tables
and graphs were generated using MATLAB.

3.1 Arbitrary equations and engineering applications

Example 1. Arbitrary problems

Two arbitrary test problems were considered to analyze the numerical behavior of the
proposed algorithms, and the results are presented in Tables 3.1-3.4.

f1(u) = u2 − 5u + 6,

f2(u) = eu − 2u − 5.

Example 2. Solving for volume in the Van der Waals equation

The Van der Waals equation is a mathematical formula used to describe the behavior of
real gases. From this equation, we derive the following:(

P +
K1n2

V2

)
(V − nK2) = nRT.

By assuming appropriate values for the given parameters, we formulate the following
nonlinear problem:

f3(u) = 0.986u3 − 5.181u2 + 9.067u − 5.289,

where u represents the volume, and the root of this equation can be found by solving
f3 = 0. As it is a cubic equation, it possesses a richer mathematical structure, typically having
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three roots. However, only one of these is a feasible positive real root ”1.9298462428” since the
volume of a gas must be positive [10]. To initiate the iteration process, we set u0 = 1.00, and
the results are recorded in Tables 3.5 and 3.6.

Example 3. Beam Designing model

Beam design is a fundamental aspect of structural engineering. In civil engineering, bricks
or stones often serve as structural horizontal elements to span gaps and support loads in the
upper portions of walls.

f4(u) = u4 + 4u3 − 24u2 + 16u + 16,

The governing equation in this case is a fourth-order polynomial with roots at 2 (with
multiplicity 2) and −4 ± 2

√
3 [11]. The initial guess for the numerical method is set as u0 =

−0.8, and all computed numerical results are presented in Tables 3.7 and 3.8.

3.2 Comparison of iteration data and error analysis

Tables 3.1-3.8 present a detailed comparison of absolute errors to assess the repeatability and
performance of various root-finding methods. The two proposed arbitrary equations, f1 = 0
and f2 = 0, along with two engineering applications, f3 = 0 and f4 = 0, were analyzed using
well-known root-finding methods: Bisection, False Position, Newton-Raphson, as well as the
newly proposed FB and BF approaches. The tables report the number of iterations required,
the final approximate root obtained, and the corresponding absolute error for each method.

Table 3.1: Approximate Roots of f1 = 0 with Respect to Each Method

Iteration Root

Bisection False Position Newton-Raphson BF Approach FB Approach

1 1.750000 2.333333 1.666667 2.166667 1.666667
2 2.125000 2.200000 1.933333 2.007937 1.888889
3 1.937500 2.111111 1.996078 2.000133 1.950617
4 2.031250 2.058824 1.999985 1.975603
5 1.984375 2.030303 1.987808
6 2.007812 2.015385 1.993904
7 1.996094 2.007752 1.996952
8 2.001953 2.003891 1.998476
9 1.999023 2.001949 1.999238
10 2.000976

Table 3.2 and Table 3.2 illustrate the approximate roots and their corresponding absolute
errors of f1 = 0 at each iteration for the methods under consideration.

The BF approach converges in just 3 iterations with a finite error and a computation time
of 0.00094 seconds, indicating high efficiency. The FB approach, while requiring slightly more
iterations (9 iterations), ensures stable and accurate convergence within 0.0038 seconds. This
method effectively balances the robustness of the Bisection method with the fast convergence
of the False Position method.

The Bisection method requires 9 iterations and a longer computation time of 0.0023 sec-
onds to converge. Although the False Position method is reliable, it takes 10 iterations and
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Table 3.2: Absolute Errors of the Roots of f1 = 0 with Respect to Each Method

Iteration Absolute Error

Bisection False Position Newton-Raphson BF Approach FB Approach

1 0.2500 0.3333 0.3333 0.1667 0.3333
2 0.1250 0.2000 0.0667 0.0079 0.1111
3 0.0625 0.1111 0.0039 0.0001 0.0494
4 0.0312 0.0588 0.0000 0.0244
5 0.0156 0.0303 0.0122
6 0.0078 0.0154 0.0061
7 0.0039 0.0078 0.0030
8 0.0020 0.0039 0.0015
9 0.0010 0.0019 0.0008
10 0.0010

results in a larger final error compared to the newly proposed approaches. When comparing
the results of f1 = 0, the Newton-Raphson method is the fastest, converging in 0.00065 sec-
onds. However, it requires derivative evaluations, which can reduce its practicality in certain
applications.

Overall, the newly proposed BF and FB approaches provide improved accuracy and effi-
ciency by strategically integrating the strengths of the False Position and Bisection methods.

Figure 3.1: Error Behavior of the Equation f1 = 0

Figure 3.1 illustrates the error behavior of the root-finding methods related to the equation
f1 = 0. The number of iterations is shown on the x-axis, and the absolute error is plotted
on the y-axis. As the number of iterations increases, the error generally decreases across all
methods.
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The Newton-Raphson method demonstrates the fastest convergence, achieving the lowest
error within the first three iterations. The BF approach also shows rapid convergence, reaching
near-zero error by the second iteration. In contrast, the False Position and FB methods exhibit
moderate convergence rates.

Overall, the Newton-Raphson method and the BF approach can be considered among the
most efficient techniques for solving the example equation f1 = 0.

Table 3.3: Approximate Roots of f2 = 0 with Respect to Each Method.

Iteration Root

Bisection False Position Newton-Raphson BF Approach FB Approach

1 2.500000 2.150605 2.298929 2.212333 2.575303
2 2.250000 2.212264 2.253014 2.249086 2.403814
3 2.375000 2.236479 2.251637 2.251555 2.326831
4 2.312500 2.245829 2.289192
5 2.281250 2.249416 2.270413
6 2.265625 2.250788 2.261025
7 2.257812 2.251312 2.256330
8 2.253906 2.251512 2.253983
9 2.251953 2.252810
10 2.250977 2.251636
11 2.251465
12 2.251709

Table 3.4: Absolute Errors of the Roots of f2 = 0 with Respect to Each Method

Iteration Absolute Error

Bisection False Position Newton-Raphson BF Approach FB Approach

1 0.2484 0.1010 0.0473 0.0393 0.3237
2 0.0016 0.0394 0.0014 0.0026 0.1522
3 0.1234 0.0152 0.0000 0.0001 0.0752
4 0.0609 0.0058 0.0376
5 0.0296 0.0022 0.0188
6 0.0140 0.0008 0.0094
7 0.0062 0.0003 0.0047
8 0.0023 0.0001 0.0023
9 0.0003 0.0012
10 0.0007 0.0000
11 0.0002
12 0.0001

Table 3.3 and Table 3.4 present the approximate roots and their corresponding absolute
errors of f2 = 0 at each iteration for the methods under consideration.

According to the results from the False Position method, it takes 8 iterations to reach the
root, yielding an absolute error of 0.0001 and a computation time of 0.0044 seconds. The
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Newton-Raphson method shows the fastest convergence, reaching the root in just 3 iterations
with an absolute error of 0.0000 in 0.00076 seconds. While the Newton-Raphson method is
known for its rapid convergence near the root under favorable conditions, it can sometimes
diverge. This typically occurs when the derivative f ′(x) is very small or zero, for instance,
in the function f (x) = x1/3, leading to large or undefined steps. Divergence may also occur
if the initial guess is far from the actual root, causing the tangent line to point away from
the root instead of toward it. The Bisection method requires 12 iterations to converge, with a
computation time of 0.0027 seconds and an absolute error of 0.0001.

In contrast, the BF approach achieves an accurate root approximation in just 3 iterations,
with a computation time of 0.0012 seconds and an absolute error of 0.0001. Similarly, the FB
approach finds the root in 10 iterations, requiring 0.0045 seconds to reach an absolute error of
0.0000.

Figure 3.2: Error Behavior of the Equation f2 = 0

Figure 3.2 illustrates the error behavior of the methods applied to find the root of the
equation f2 = 0. The graph shows that the Newton-Raphson method achieves the fastest
convergence. The False Position method also demonstrates stable convergence at a slightly
slower rate. The BF approach follows a pattern similar to that of the Newton-Raphson method,
effectively minimizing error with high efficiency. In contrast, the Bisection and FB methods
exhibit noticeable fluctuations before eventually converging and stabilizing.

Table 3.5 and Table 3.6 illustrate the approximate roots and their corresponding absolute
errors of f3 = 0 at each iteration for the methods under consideration.

The Bisection method required 3 iterations to find the root, yielding an absolute error
of 0.0077. While this method guarantees convergence, its rate of convergence is relatively
slow. The False Position method required 31 iterations to meet the error tolerance of 0.001,
demonstrating a steady decrease in error over time, despite the higher number of iterations.
The newly introduced BF and FB approaches demonstrated superior performance. The BF
approach converged in just 4 iterations with an absolute error of 0.0008. The FB approach
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Table 3.5: Approximate Roots of f3 = 0 with Respect to Each Method

Iteration Root

Bisection False Position Newton-Raphson BF Approach FB Approach

1 1.750000 1.762340 1.600279 1.757760 2.131170
2 2.125000 1.770139 1.708344 1.789416 1.962304
3 1.937500 1.777952 -0.171433 1.890805 1.925894
4 1.785765 0.469044 1.929060
5 1.793560 0.896064
6 1.801314 1.181160
7 1.809000 1.372672
8 1.816591 1.504478
9 1.824055 1.604024
10 1.831359 1.714541
11 1.838471 0.599854
12 1.845359 0.983327
13 1.851994 1.239577
14 1.858351 1.412343
15 1.864405 1.532931
16 1.870139 1.629116
17 1.875541 1.768249
18 1.880600 1.128434
19 1.885315 1.337059
20 1.889686 1.479452
21 1.893719 1.583610
22 1.897424 1.684139
23 1.900812 2.377007
24 1.903898 2.174960
25 1.906699 2.046028
26 1.909232 1.970873
27 1.911516 1.937449
28 1.913570
29 1.915412
30 1.917060
31 1.918531

showed improved efficiency with 3 iterations and a final absolute error of 0.0040, indicating
faster convergence than conventional methods.

A sharp decrease in absolute error was observed during the initial iterations, suggesting
that the error behavior of the proposed approaches is more stable. These results indicate
that the BF and FB approaches can achieve accurate solutions with minimal computational
effort, making them particularly suitable for solving nonlinear equations in contexts where
computational resources are limited and rapid convergence is essential.

Figure 3.3 illustrates the absolute error behavior of various numerical methods used to
find the root of the Van der Waals equation, f3 = 0.

The error behavior of the BF and FB approaches demonstrates high convergence rates,
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Table 3.6: Absolute Errors of the Roots of f3 = 0 with Respect to Each Method

Iteration Absolute Error

Bisection False Position Newton-Raphson BF Approach FB Approach

1 0.1798 0.1675 0.3296 0.1721 0.2013
2 0.1952 0.1597 0.2215 0.1404 0.0325
3 0.0077 0.1519 2.1013 0.0390 0.0040
4 0.1441 1.4608 0.0008
5 0.1363 1.0338
6 0.1285 0.7487
7 0.1208 0.5572
8 0.1133 0.4254
9 0.1058 0.3258
10 0.0985 0.2153
11 0.0914 1.3300
12 0.0845 0.9465
13 0.0779 0.6903
14 0.0715 0.5175
15 0.0654 0.3969
16 0.0597 0.3007
17 0.0543 0.1616
18 0.0492 0.8014
19 0.0445 0.5928
20 0.0402 0.4504
21 0.0361 0.3462
22 0.0324 0.2457
23 0.0290 0.4472
24 0.0259 0.2451
25 0.0231 0.1162
26 0.0206 0.0410
27 0.0183 0.0076
28 0.0163
29 0.0144
30 0.0128
31 0.0113

making them suitable for fast approximation. While the Newton-Raphson method converges
more quickly, it exhibits less stability due to fluctuations in the error. Although the Bisection
method is slower, it remains a reliable approach, providing a consistent and systematic reduc-
tion in error. In contrast, the False Position method shows lower reliability, with significant
error fluctuations compared to the other methods.

Table 3.7 and Table 3.8 present the approximate roots and their corresponding absolute
errors of f4 = 0 at each iteration for the methods under consideration.

Using the Bisection method, the root is reached in 13 iterations with an absolute error of
approximately 0.0000. However, the method is relatively slow due to its linear convergence
rate. The False Position method converges in 6 iterations, achieving an absolute error of
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Figure 3.3: Error Behavior of the Van der Waals Equation

Table 3.7: Approximate Roots of f4 = 0 with Respect to Each Method

Iteration Root

Bisection False Position Newton-Raphson BF Approach FB Approach

1 -0.450000 -0.454479 -0.625000 -0.522684 -0.627239
2 -0.625000 -0.523402 -0.540532 -0.534896 -0.579188
3 -0.537500 -0.534047 -0.535912 -0.535860 -0.557478
4 -0.493750 -0.535625 -0.535898 -0.546687
5 -0.515625 -0.535858 -0.541293
6 -0.526563 -0.535892 -0.538596
7 -0.532031 -0.537247
8 -0.534766 -0.536573
9 -0.536133 -0.536236
10 -0.535449 -0.536067
11 -0.535791 -0.535983
12 -0.535962 -0.535941
13 -0.535876 -0.535919

0.0000. Compared to the Bisection method, it shows greater efficiency by reducing the number
of iterations, although it requires a slightly higher computation time of 0.0178 seconds.

The Newton-Raphson method exhibits the highest efficiency, reaching the root in just 3 iter-
ations with an absolute error of 0.0000 and a computation time of 0.0020 seconds. This method
demonstrates quadratic convergence but requires the computation of derivatives, which can
limit its applicability in certain contexts.

The newly introduced BF approach also performs competitively, reaching the root in 4
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Table 3.8: Absolute Errors of the Roots of f4 = 0 with Respect to Each Method

Iteration Absolute Error

Bisection False Position Newton-Raphson BF Approach FB Approach

1 0.0859 0.0814 0.0891 0.0132 0.0913
2 0.0891 0.0125 0.0046 0.0010 0.0433
3 0.0016 0.0019 0.0000 0.0000 0.0216
4 0.0421 0.0003 0.0000 0.0108
5 0.0203 0.0000 0.0054
6 0.0093 0.0000 0.0027
7 0.0039 0.0013
8 0.0011 0.0007
9 0.0002 0.0003
10 0.0004 0.0002
11 0.0001 0.0001
12 0.0001 0.0000
13 0.0000 0.0000

iterations with an absolute error of 0.0000 and a computation time of 0.0034 seconds. This
method offers a strong balance between computational efficiency and rapid convergence.

The FB approach achieved convergence in 13 iterations. However, it shows improved
efficiency by achieving a slightly faster computation time of 0.0047 seconds. While not as fast
as the BF or Newton-Raphson methods, the FB approach maintains stable convergence with a
consistent stepwise reduction in the absolute error.

Figure 3.4: Error Behavior of the Beam Designing Model
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Figure 3.4 illustrates the absolute error behavior of various numerical methods applied to
solve the Beam Design Model equation, f4 = 0.

The Newton-Raphson method demonstrates the fastest convergence due to its quadratic
nature, with significantly improved efficiency when an appropriate initial guess is provided.
The False Position and FB methods exhibit moderate convergence, effectively balancing speed
and reliability. The Bisection method ensures stable and consistent convergence by progres-
sively reducing the absolute error, though at a slower rate. The BF approach shows a rapid
initial error reduction, followed by a steady convergence phase, indicating both stability and
efficiency.

3.3 Convergence analysis

Tables 3.9–3.12 illustrate the convergence behavior of the example equations f1 = 0, f2 = 0,
f3 = 0, and f4 = 0. Each function exhibits distinct convergence patterns, with varying levels
of stability and efficiency. The equations f1 = 0 and f2 = 0 demonstrate linear convergence,
gradually stabilizing toward the root. The equation f3 = 0 displays quadratic convergence,
characterized by rapid error reduction, whereas f4 = 0 follows an exponential convergence
trend.

These results highlight the importance of selecting an appropriate root-finding method to
optimize computational efficiency and ensure reliable performance across different types of
equations.

Table 3.9: Convergence Behavior of Equation f1 = 0

Steps Bisection False Position Newton BF FB

1.000000 1.000000 1.150660 1.913814 1.343856 0.738140
2.000000 1.000000 1.082006 0.869524
3.000000 1.000000 1.042934 0.983830
4.000000 1.000000 1.021989 0.999192
5.000000 1.000000 0.011131 0.999980
6.000000 1.000000 1.005600 1.000000
7.000000 1.000000 1.002809 1.000000
8.000000 1.001407

Table 3.9 shows the convergence behavior of approximate roots of f1 = 0 at each itera-
tion for the methods under consideration. The results clearly reflect significant differences
in the convergence rates among the root-finding methods. The Newton-Raphson method
demonstrates the fastest convergence during initial iterations and achieves a higher overall
convergence rate compared to other methods.

The newly introduced BF and FB approaches also exhibit strong performance. The BF
approach begins with the Bisection method and transitions to the False Position method,
resulting in stable and reliable convergence. In contrast, the FB approach starts with the False
Position method before switching to the Bisection method. This configuration enables faster
initial convergence than traditional methods, such as the standard False Position technique.

While the classic Bisection method maintains a constant convergence rate of 1.000000, the
BF and FB approaches outperform it in terms of efficiency. The BF approach shows consistent
performance with a steadily increasing convergence rate approaching 1.000000. Similarly,
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the FB approach achieves rapid convergence because False Position begins at an early stage.
However, the standard False Position method shows low efficiency, especially in the later
iterations, due to fluctuating convergence rates. This variability is effectively mitigated by the
hybrid nature of the BF and FB approaches.

Table 3.10: Convergence Behavior of Equation f2 = 0

Steps Bisection False Position Newton BF FB

1.000000 -0.860676 1.012985 1.994147 1.260410 0.934148
2.000000 -0.163437 1.005039 0.984806
3.000000 1.019673 1.001936 0.998479
4.000000 1.041068 1.000738 0.999927
5.000000 1.090075 1.000274 0.999999
6.000000 1.224310 1.000084 1.000001
7.000000 1.967111 1.000002
8.000000 -0.372324 1.000000
9.000000 -1.838690

10.000000 0.635400

Table 3.10 illustrates the convergence behavior of the approximate roots of f2 = 0 at each it-
eration for the methods under consideration. The results reveal distinct convergence patterns,
highlighting differences in efficiency and stability among the methods.

The Bisection method consistently achieves convergence; however, the approximate roots
exhibit oscillations between positive and negative values in successive iterations, indicating
fluctuations in the convergence rate. The False Position method demonstrates a steady con-
vergence trend, gradually approaching a rate of 1, although its overall progress toward the
root is comparatively slow. In contrast, the Newton-Raphson method, known for its quadratic
convergence, outperforms both the Bisection and False Position methods in terms of speed
and accuracy.

The newly introduced BF and FB approaches exhibit high convergence tendencies. The
BF approach, in particular, achieves rapid convergence, reaching a rate close to 1 as early as
the first iteration and outperforming other methods in later iterations. By the 8th iteration,
it successfully reached the root with a notably high convergence rate. The FB approach also
demonstrates a robust and stable convergence pattern with minimal fluctuation, offering a
reliable alternative to classical techniques.

Table 3.11 presents the convergence behavior of various root-finding methods applied to
the Van der Waals equation represented by f3 = 0.

The Newton-Raphson method demonstrates rapid convergence in the initial iterations;
however, it exhibits an oscillatory pattern, indicating instability. While the Bisection method
maintains stable convergence, it fails to demonstrate sufficient progress toward the root within
the recorded iterations, highlighting its slower performance.

The newly proposed BF approach achieves faster convergence in the early stages but dis-
plays slight fluctuations before stabilizing. In contrast, the FB approach demonstrates a more
accurate and stable convergence trend, outperforming both the Newton-Raphson and False
Position methods in terms of consistency and precision.

These results suggest that the BF and FB approaches offer effective alternatives for solving
nonlinear equations, especially in cases where traditional methods struggle to maintain stable
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Table 3.11: Convergence Behavior of Equation f3 = 0

Steps Bisection False Position Newton BF FB

1.000000 -39.647090 1.051992 0.923174 6.297153 1.153829
2.000000 1.052824 1.062005 3.050221
3.000000 1.053220 2.503878
4.000000 1.053198 -2.888425
5.000000 1.052778 -0.161569
6.000000 1.051985 0.919108
7.000000 1.050848 0.910983
8.000000 1.049401 0.956485
9.000000 1.047681 1.297493
10.000000 1.045727 -1.440426
11.000000 1.043581 -1.264434
12.000000 1.041287 1.264679
13.000000 1.038887 1.430498
14.000000 1.036422 1.666126
15.000000 1.033932
16.000000 1.031452
17.000000 1.029014
18.000000 1.026644
19.000000 1.024365
20.000000 1.022192
21.000000 1.020140
22.000000 1.018217
23.000000 1.016426
24.000000 1.014770
25.000000 1.013247
26.000000 1.011853
27.000000 1.010584
28.000000 1.009433
29.000000 1.008392

convergence or efficient performance.
Table 3.12 presents the convergence behavior of different root-finding methods applied to

the Beam Designing model equation represented by f4 = 0.
The Bisection method demonstrates a slow and oscillatory convergence pattern, with some

intermediate steps yielding negative values before approaching the root. The False Position
method, although requiring more iterations, exhibits stable and consistent convergence. No-
tably, the Newton-Raphson method achieves a high convergence rate of 1.990116 in the first
iteration, indicating its rapid progression toward the root under favorable conditions.

The newly introduced BF and FB approaches demonstrate exceptionally strong conver-
gence characteristics. The FB approach quickly approximates the correct root, reaching a con-
vergence value close to 1.000000 within three iterations. Similarly, the BF approach achieves
rapid steady-state convergence and high accuracy in the final steps. Overall, the BF and FB
methods prove to be efficient and robust alternatives, outperforming traditional root-finding
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Table 3.12: Convergence Behavior of Equation f4 = 0

Steps Bisection False Position Newton BF FB

1.000000 -109.765028 1.018806 1.990116 1.260791 0.932321
2.000000 -0.813729 1.002811 1.208076 0.995801
3.000000 -0.223806 1.000414 0.999882
4.000000 1.059512 1.000059 0.999998
5.000000 1.136578 1.000000
6.000000 1.393152 1.000000
7.000000 1.282939 1.000000
8.000000 -0.412785 1.000000
9.000000 -2.200888 1.000000
10.000000 0.366689 1.000000
11.000000 2.027720 1.000001

techniques in both speed and stability.

3.4 Validation of method accuracy using statistical tests

In this section, two statistical tests are applied to evaluate the variance in performance among
the numerical methods under consideration.

Table 3.13: One-way ANOVA Summary for log(RMSE) Across Root-Finding Methods

Source of Variation Df Sum of Squares (SS) Mean Square (MS) F-value p-value

Method 4 4.972 1.2429 11.19 0.000208
Residuals 15 1.666 0.1111

Note: The p-value indicates that differences in log(RMSE) among the methods are statisti-
cally significant at the 0.05 level.

Table 3.13 presents the results of the one-way ANOVA conducted to evaluate the variance
in performance among the numerical methods under consideration.

To assess variations in performance among the five methods, a one-way analysis of vari-
ance (ANOVA) was conducted on the log-transformed root mean square error (RMSE) values
derived from the error data. The log transformation was applied to stabilize the variance and
improve the normality of the data distribution. The ANOVA results, F(4,15)=11.19, p=0.0002,
indicate a statistically significant difference among the methods, suggesting that at least one
method differs significantly in terms of accuracy.

Table 3.14 presents the results of pairwise comparisons using Tukey’s Honest Significant
Difference (HSD) test. This post-hoc analysis identified specific pairs of methods with statis-
tically significant differences. The proposed BF method performed significantly better than
the Bisection (p=0.0063), False Position (p=0.011), and Newton-Raphson (p=0.0013) methods.
Likewise, the FB method outperformed the Bisection (p=0.0086) and False Position (p=0.0154)
methods. However, the difference between BF and FB methods was not statistically significant
(p=0.9998), suggesting comparable performance between these two hybrid approaches.
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Table 3.14: Tukey HSD Pairwise Comparisons of log(RMSE) Between Methods

Comparison Mean Difference 95% Confidence Interval Adjusted p-value

Bisection – BF 0.98228102 [0.2545496, 1.7100125] 0.0062820
False Position – BF 0.91204081 [0.1843094, 1.6397723] 0.0112030
FB – BF 0.03845372 [-0.6892777, 0.7661852] 0.9998208
Newton-Raphson – BF 1.17116641 [0.4434350, 1.8988979] 0.0013483
False Position – Bisection -0.07024021 [-0.7979717, 0.6574912] 0.9980768
FB – Bisection -0.94382730 [-1.6715588, -0.2160959] 0.0086225
Newton-Raphson – Bisection 0.18888539 [-0.5388461, 0.9166168] 0.9261313
FB – False Position -0.87358709 [-1.6013185, -0.1458556] 0.0153690
Newton-Raphson – False Position 0.25912560 [-0.4686059, 0.9868570] 0.8041633
Newton-Raphson – FB 1.13271269 [0.404981, 1.8604441] 0.0018378

4 Conclusion

In this study, we introduced two novel approaches, namely the BF and FB methods, for solv-
ing nonlinear equations. These techniques were developed by modifying two classical root-
finding methods: the Bisection and the False Position. To evaluate the performance of the
proposed approaches, we applied them to four distinct nonlinear equations, including two
arbitrary problems and two practical applications. Additionally, we compared the modified
approaches with three existing methods (Bisection, False Position, and Newton-Raphson) to
analyze their convergence behavior.

For the equation f1(u) = 0, the BF method demonstrated rapid convergence to the root
with minimal error and reduced computation time compared to the Bisection and False Po-
sition methods. In contrast, the FB and Bisection methods exhibited similar convergence
behavior, while the False Position method required more iterations and resulted in higher
errors at each step. Compared to the Newton-Raphson method, the BF approach proved to be
more efficient, whereas the FB method showed slightly inferior performance.

For the equation f2(u) = 0, both the BF and Newton-Raphson methods converged to the
root with the same number of iterations and nearly identical error values at each step. The
FB approach required significantly more iterations than the False Position, Newton-Raphson,
and BF methods, although it outperformed the Bisection method in this instance.

In the Van der Waals equation f3(u) = 0, the BF, FB, and Bisection methods achieved
faster convergence to the root than both the Newton-Raphson and False Position methods.
Although the False Position method required more iterations than Newton-Raphson, the New-
ton method exhibited higher errors at each step in this case.

For the Beam Design Model equation f4(u) = 0, the BF and Newton-Raphson methods
required nearly the same number of iterations to converge; however, the BF approach achieved
higher accuracy. The FB approach, while converging with better accuracy than the Bisection
method, demonstrated lower precision compared to the False Position method.

A numerical convergence analysis was conducted to examine the convergence behavior
of each method. The estimated average orders of convergence for the existing methods were
consistent with their theoretically established values. In contrast, the proposed hybrid meth-
ods exhibited average orders of convergence generally greater than or equal to one, indicating
super-linear convergence. Furthermore, statistical analysis revealed that the proposed BF
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method achieved significantly better performance than all other methods, except for the FB
approach. Additionally, the FB method demonstrated improved efficiency compared to the
traditional Bisection and False Position methods.

The BF method demonstrates significant advantages in scenarios involving functions with
flat or shallow roots (i.e., when the derivative of the function near the root is very small or
close to zero), where conventional methods often exhibit slow initial convergence. For exam-
ple, the Van der Waals equation f3 = 0 benefits from the BF method’s combined strategy of
interval reduction through Bisection, followed by accelerated refinement via the False Position
technique. Furthermore, the method is well-suited for highly nonlinear or oscillatory func-
tions, as observed in f2 = 0 and the Beam Design model f4 = 0, where abrupt slope variations
and multiple inflection points can hinder convergence if not effectively stabilized in the initial
stages.

Additionally, in cases characterized by poorly bracketed roots or wide initial intervals,
such as f1 = 0 and again f4 = 0, the initial Bisection step ensures that the root remains
confined within a progressively narrowing interval, thereby enhancing robustness and relia-
bility. Conversely, the FB method is particularly effective for functions that are near-linear,
monotonic, or exhibit gentle curvature, where the False Position method enables rapid initial
progress before transitioning to Bisection for convergence stabilization.

For instance, both f1 = 0 and f2 = 0, which are monotonic within the tested intervals, ben-
efit from the FB strategy: the initial False Position step efficiently reduces the root-containing
interval, while the subsequent Bisection step ensures convergence without the risk of over-
shooting or divergence. This dual-phase approach highlights the importance of method selec-
tion based on the underlying characteristics of the equationfavoring BF for highly irregular or
higher-order polynomials, and FB for well-behaved transcendental or nearly linear functions.

Based on the overall results from the selected examples, we can conclude that the proposed
BF approach provides accurate approximation with high efficiency and requires fewer itera-
tions compared to the Bisection, False Position, and occasionally the Newton-Raphson meth-
ods. However, the FB approach converges more slowly compared to the Newton-Raphson
method.

5 Future work

Future research can focus on providing rigorous theoretical foundations for the proposed BF
and FB methods, including formal proofs of their convergence order and conditions under
which they exhibit super-linear behavior. Additionally, deriving precise error bounds would
help quantify the accuracy at each iteration. A comprehensive stability analysis, considering
variations in initial intervals and function perturbations, would further enhance the reliability
of these techniques.

Beyond theoretical improvements, the methods can be extended to address more complex
problem classes, such as systems of nonlinear equations, where multidimensional root-finding
poses additional challenges. Furthermore, exploring their integration into numerical schemes
for ordinary and partial differential equations, as well as their application in optimization
frameworks, would significantly expand the practical relevance of these hybrid approaches.
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Appendix

The MATLAB codes used to support the findings of this study are available at the following
link:

https://drive.google.com/drive/folders/1VT99mzh51YjtBfR90cFWOfnYWkWpfpIg?usp=sharing

Researchers are welcome to access the repository for implementation details and to facili-
tate further analysis or replication of the results presented in this paper.
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