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Abstract. This paper introduces curvature-adaptive variants of both the Euler and
Runge-Kutta methods for solving ordinary differential equations (ODEs). By incor-
porating local curvature information into step size selection, the proposed Curvature-
Adaptive Euler (CAE) and Curvature-Adaptive fourth-order Runge-Kutta (CARK4)
methods achieve a superior balance between accuracy and computational efficiency
compared to their fixed-step counterparts. The unified curvature adaptation frame-
work presented in this work enhances classical ODE solvers by leveraging the geomet-
ric properties of the solution curve, resulting in more efficient numerical integration
schemes.
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1 Introduction

Numerical methods for solving ODEs play a crucial role in scientific computing, engineering,
and applied mathematics. Classical fixed-step solvers, such as the explicit Euler method and
the Runge-Kutta family, often suffer from inefficiencies when dealing with solution curves
exhibiting spatially varying complexity [6]. In regions of high curvature, a small step size
is necessary to maintain accuracy, whereas in regions of low curvature, larger step sizes are
more computationally efficient.

Adaptive step size techniques have been widely studied [15], typically relying on error
estimation mechanisms. However, many conventional approaches do not explicitly incorpo-
rate geometric properties of the solution, such as curvature, into the adaptation process. This
paper introduces a curvature-adaptive paradigm to address this gap.

We propose two novel curvature-adaptive methods. The first is the Curvature-Adaptive
Euler (CAE) method, a first-order approach in which the step size dynamically adjusts based
on local curvature estimates. The second is the CARK4 method, a fourth-order Runge-Kutta
scheme that integrates curvature-informed error control to optimize step size selection.
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By leveraging geometric insights, these methods achieve a superior balance between accu-
racy and computational efficiency compared to traditional fixed-step solvers. The curvature-
adaptive approach offers a unified framework for enhancing ODE integration, particularly for
problems in which solution complexity varies significantly across different regions.

2 Mathematical foundations

Numerical methods for solving ODEs often rely on fixed-step solvers, which may not be
efficient when dealing with solution curves exhibiting varying complexity. To address this
limitation, we introduce a curvature-adaptive approach that dynamically adjusts step sizes
based on the geometric properties of the solution. This section presents the mathematical
foundation underlying our curvature-adaptive methods, beginning with the formal definition
of curvature and its computation in the context of ODEs.

2.1 Curvature of a solution curve

Curvature is a fundamental geometric property that quantifies how sharply a curve bends at a
given point. Given a function y = y(x), the curvature κ at any point is defined as (see [5, 17]):

κ =
|y′′(x)|

(1 + (y′(x))2)3/2 . (2.1)

This formula follows from differential geometry, where curvature is derived from the Frenet-
Serret formulas for plane curves [9].

For a first-order ordinary differential equation (ODE) of the form

dy
dx

= f (x, y), (2.2)

we substitute y′ = f (x, y) and compute the second derivative using the chain rule:

y′′ =
d

dx
f (x, y) =

∂ f
∂x

+
∂ f
∂y
· f . (2.3)

Substituting (2.3) into (2.1), we obtain the curvature of the solution curve:

κ =
| fx + fy f |
(1 + f 2)3/2 , (2.4)

where fx =
∂ f
∂x

and fy =
∂ f
∂y

denote the partial derivatives of f with respect to x and y,

respectively.

Lemma 2.1 (Curvature Estimation). The curvature of the solution curve to the ODE (2.2) at a given
point (xn, yn) can be computed directly from f (x, y) and its partial derivatives, as given by (2.4).

This result provides a direct means of assessing the geometric behavior of solutions to dif-
ferential equations, which is particularly useful in stability analysis and dynamical systems
(see [1, 14]).



84 A. MOULAI-KHATIR

2.2 Adaptive step size strategy

To mitigate numerical errors in regions of high curvature, an adaptive step size strategy is em-
ployed, adjusting the step size h inversely proportional to the curvature κ. This ensures finer
resolution where the solution curve bends sharply and coarser resolution in flatter regions.
The step size is updated as follows:

hn+1 =
hbase

1 + ακn
, (2.5)

where hbase is a predefined baseline step size, and α > 0 is a sensitivity parameter controlling
the adaptation rate [2, 6].

2.3 Curvature estimation

When analytical partial derivatives are unavailable, finite difference approximations can be
used. To ensure numerical stability and accuracy, the perturbation parameters δ and ϵ should
be chosen adaptively based on the scale of the problem [16]. The approximations are given
by:

fx ≈
f (xn + δ, yn)− f (xn, yn)

δ
, fy ≈

f (xn, yn + ϵ)− f (xn, yn)

ϵ
, (2.6)

which are first-order accurate with truncation errors O(δ) and O(ϵ), respectively. Here,
δ = max(τ, η|xn|) and ϵ = max(τ, η|yn|) for small constants τ, η > 0, ensuring that the
perturbations are neither too large nor too small relative to the scale of xn and yn [15].

3 Curvature-adaptive Euler and Runge-Kutta methods

In this section, we recall the classical Euler and RK4 methods and introduce their curvature-
adaptive counterparts. Traditional fixed-step solvers, while effective for many problems, can
struggle with efficiency in regions where the solution curve exhibits significant variations
in curvature. By incorporating curvature-dependent step size adjustments, our proposed
methods enhance accuracy without excessive computational cost.

3.1 Classical Euler and RK4 methods

The Euler method is the simplest numerical approach for solving the initial value problem:

dy
dx

= f (x, y), y(x0) = y0. (3.1)

Using a fixed step size h, the numerical approximation is computed iteratively as:

yn+1 = yn + h f (xn, yn). (3.2)

Despite its simplicity, the Euler method suffers from significant truncation errors, particularly
in stiff or highly varying systems.
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The classical RK4 method improves upon Eulers approach by incorporating intermediate eval-
uations of f (x, y) to achieve higher accuracy. The RK4 update rule is given by:

k1 = f (xn, yn), (3.3)

k2 = f (xn +
h
2

, yn +
h
2

k1), (3.4)

k3 = f (xn +
h
2

, yn +
h
2

k2), (3.5)

k4 = f (xn + h, yn + hk3), (3.6)

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4). (3.7)

The RK4 method provides a good balance between accuracy and computational cost, making
it widely used in practice.

3.2 Curvature-adaptive variants

To improve the efficiency of Euler and RK4 in regions with high solution curvature, we intro-
duce the Curvature-Adaptive Euler (CAE) and Curvature-Adaptive RK4 (CARK4) methods.
These methods dynamically adjust the step size h based on local curvature κ of the solution
trajectory, ensuring finer resolution in regions of high curvature and larger steps in flatter
regions. The adaptive step size is determined by formula (2.5).

3.3 Linear stability analysis for the proposed methods

Linear stability analysis is a critical tool for understanding the behavior of numerical methods
when applied to stiff or highly sensitive systems. For the curvature-adaptive methods intro-
duced in this work, the stability analysis examines how the adaptive step size h affects the
overall stability of the numerical solution.

3.3.1 Stability of the curvature-adaptive Euler method

Consider the test equation:
dy
dx

= λy, λ ∈ C, (3.8)

where λ is a complex constant. The exact solution is given by y(x) = y0eλx. Applying the
Curvature-Adaptive Euler (CAE) method to (3.8), the numerical iteration becomes:

yn+1 = yn + hnλyn, (3.9)

where hn is determined by the curvature-adaptive step size formula (2.5). Substituting hn =

hbase/(1 + ακn), we obtain:

yn+1 = yn

(
1 +

hbaseλ

1 + ακn

)
. (3.10)

The stability condition requires that the magnitude of the numerical amplification factor
|1 + hnλ| remains less than or equal to 1. This implies:∣∣∣∣1 + hbaseλ

1 + ακn

∣∣∣∣ ≤ 1. (3.11)
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The effect of the curvature κn on the stability region is evident: higher curvature reduces hn,
thereby shrinking the stability region in the complex plane. A detailed analysis of the stability
boundaries can be performed numerically for specific choices of hbase, α, and κn.

3.3.2 Stability of the CARK4 method

For the CARK4 method, the stability function R(z) for the fixed-step RK4 method is given by:

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
, z = hλ. (3.12)

In the adaptive case, the step size hn depends on the local curvature κn, resulting in:

zn =
hbaseλ

1 + ακn
. (3.13)

The stability criterion requires |R(zn)| ≤ 1, which translates to:

∣∣∣∣1 + zn +
z2

n
2
+

z3
n

6
+

z4
n

24

∣∣∣∣ ≤ 1. (3.14)

As with the curvature-adaptive Euler method, the stability region for the CARK4 method
depends on the curvature κn, the baseline step size hbase, and the sensitivity parameter α. In
regions of high curvature, smaller hn leads to a more restrictive stability region, which can
mitigate numerical instability but may also increase computational cost.
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Figure 3.1: Stability region are inside the circles and unstable regions outside. Here α = 1.
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Figure 3.2: Stability region are inside the shapes and unstable regions outside. Here α = 1
also.

3.3.3 Numerical illustration of stability regions

To visualize the effect of curvature adaptation on stability, we compute stability regions for
both the CAE and CARK4 methods over a range of κn values. These regions are compared
to the fixed-step counterparts, illustrating how curvature adaptation modifies the stability
boundaries in the complex plane.

Lemma 3.1 (Curvature-Stability Trade-off). For the curvature-adaptive methods, there exists a
trade-off between stability and efficiency: higher sensitivity to curvature (α) improves stability in re-
gions of high curvature but can reduce the effective step size, increasing computational cost.

This analysis highlights the importance of carefully selecting the parameters hbase and α to
balance stability and efficiency in practical applications.

4 Error analysis of curvature-adaptive methods

Error analysis is critical for assessing the accuracy and stability of numerical methods. In this
section, we analyze the local truncation error and global error of the CAE and the CARK4
methods, comparing them to their fixed-step counterparts.

4.1 Error in the CAE method

For the standard Euler method, the local truncation error at each step is O(h2), leading to a
global error of O(h). In CAE, the step size hn is dynamically adjusted based on curvature,
influencing the error accumulation over multiple steps.
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Expanding y(xn+1) via Taylor series gives:

y(xn+1) = y(xn) + h f (xn, yn) +
h2

2
fx + O(h3). (4.1)

Since the curvature-based step size modification affects h, the error term changes to:

en = O

(
h2

base
(1 + ακn)2

)
. (4.2)

The global error accumulates over multiple steps, leading to:

EN = O

(
N

∑
n=1

hbase

(1 + ακn)

)
. (4.3)

This indicates that in regions of high curvature, where κn is large, the adaptive step size
reduces truncation error and enhances stability.

4.2 Error in the CARK4 method

The RK4 method has a local truncation error of O(h5) and a global error of O(h4). Introducing
curvature-based adaptation modifies the step size, affecting the error propagation.
Using Taylor expansion for RK4, the local error per step in CARK4 is:

en = O

(
h5

base
(1 + ακn)5

)
. (4.4)

Thus, the global error over N steps is:

EN = O

(
N

∑
n=1

h4
base

(1 + ακn)4

)
. (4.5)

Since κn influences step size, error accumulation is reduced in high-curvature regions, leading
to improved accuracy over fixed-step RK4.

4.3 Implications and comparisons

1. In regions of low curvature, CAE and CARK4 behave similarly to their fixed-step coun-
terparts.

2. In high-curvature regions, the adaptive step size reduces the local truncation error,
thereby improving numerical stability.

3. CARK4 retains its higher accuracy while benefiting from curvature adaptation, making
it suitable for problems with varying solution complexity.

These results demonstrate that curvature-adaptive methods enhance both efficiency and ac-
curacy, particularly for problems exhibiting non-uniform solution behavior.
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Algorithm 1 CAE Method
Input: f (x, y), (x0, y0), xend, hbase, α

Output: Solution trajectory {(xn, yn)}
1: x ← x0

2: y← y0

3: while x < xend do
4: κ ← compute curvature at (x, y) via (2.4)

5: h← hbase

1 + ακ
6: y← y + h · f (x, y)
7: x ← x + h

Algorithm 2 CARK4 Method
Input: f (x, y), (x0, y0), xend, hbase, α

Output: Solution trajectory {(xn, yn)}
1: x ← x0

2: y← y0

3: while x < xend do
4: κ ← compute curvature at (x, y) via (2.4)

5: h← hbase

1 + ακ
6: k1 ← f (x, y)

7: k2 ← f
(

x +
h
2

, y +
h
2

k1

)
8: k3 ← f

(
x +

h
2

, y +
h
2

k2

)
9: k4 ← f (x + h, y + hk3)

10: y← y +
h
6
(k1 + 2k2 + 2k3 + k4)

11: x ← x + h

5 Numerical experiments

To evaluate the performance of the Curvature-Adaptive Euler (CAE) method, we conduct
numerical experiments on two benchmark problems: an exponential decay system and an
oscillatory system. The goal is to compare CAE and CARK4 against the classical Euler and
RK4 methods, focusing on the following performance aspects:

• Global error dynamics: Measuring accuracy improvements over fixed-step methods.

• Step size adaptation behavior: Analyzing how step sizes evolve in response to curva-
ture variations.

• Computational efficiency: Assessing trade-offs between accuracy and computational
cost.
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5.1 Experiment 1: Exponential decay system

We consider the initial value problem:

dy
dx

= −2y, y(0) = 1, x ∈ [0, 2]. (5.1)

The exact solution is:
y(x) = e−2x. (5.2)

The curvature function for this system is given by:

κ(x) =
8e−2x

(1 + 4e−4x)3/2 . (5.3)

For the numerical simulation, we apply the adaptative curvature methods with:

hbase = 0.5, α = 1. (5.4)

Tables 5.1 and 5.2 presents numerical values/errors at selected points, while Figure 5.1 illus-
trates how the adaptive step size responds to varying curvature.

5.1.1 Discussion for experiment 1

The results from Tables 5.1 (numerical values) and 5.2 (errors) reveal critical insights about
fixed-step versus curvature-adaptive methods for solving differential equations. All methods
start with perfect agreement at t = 0, but diverge significantly as time progresses due to the
system’s decaying dynamics.

The standard Euler method performs poorly, collapsing to zero by t = 0.6 (Table 5.1) with
errors exceeding 0.3 at intermediate times (Table 5.2). This reflects its first-order truncation
error and inability to handle curvature in stiff systems. While the curvature-adaptive Euler
(CAE) shows slight improvements early (e.g., error 0.203 vs. 0.249 at t = 0.4), it remains
fundamentally limited by its low-order scheme.

Time Exact Euler RK4 CAE CARK4

0.00× 100 1.00× 100 1.00× 100 1.00 × 100 1.00 × 100 1.00 × 100

2.00× 10−1 6.70× 10−1 6.00× 10−1 7.50× 10−1 6.00× 10−1 7.18 × 10−1

4.00× 10−1 4.49× 10−1 1.90× 10−1 5.00× 10−1 2.47× 10−1 4.57 × 10−1

6.00× 10−1 3.01× 10−1 0.00× 100 3.28 × 10−1 1.41× 10−1 3.12 × 10−1

8.00× 10−1 2.02× 10−1 0.00× 100 2.34 × 10−1 7.94× 10−2 2.11 × 10−1

1.00× 100 1.35× 10−1 0.00× 100 1.41 × 10−1 3.50× 10−2 1.39 × 10−1

1.20× 100 9.07× 10−2 0.00× 100 1.05 × 10−1 2.02× 10−2 9.52 × 10−2

1.40× 100 6.08× 10−2 0.00× 100 7.03 × 10−2 7.22× 10−3 6.50 × 10−2

1.60× 100 4.08× 10−2 0.00× 100 4.61 × 10−2 2.63× 10−3 4.30 × 10−2

1.80× 100 2.73× 10−2 0.00× 100 3.30× 10−2 1.15× 10−3 2.92 × 10−2

2.00× 100 1.83× 10−2 0.00× 100 1.98 × 10−2 4.88× 10−5 1.86 × 10−2

Table 5.1: Numerical values for the different methods from experiment 1.
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In contrast, the fourth-order Runge-Kutta (RK4) method maintains reasonable accuracy
throughout the simulation, with maximum errors an order of magnitude smaller than Euler
(e.g., 0.0269 vs. 0.301 at t = 0.6). However, its fixed-step implementation still accumulates no-
ticeable errors during rapid decays, particularly at t = 0.2 where it overestimates the solution
by 0.08 (Table 5.1).

Time Euler RK4 CAE CARK4

0.00× 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

2.00× 10−1 7.03× 10−2 7.97× 10−2 7.03× 10−2 4.75 × 10−2

4.00× 10−1 2.49× 10−1 5.07× 10−2 2.03× 10−1 7.96 × 10−3

6.00× 10−1 3.01× 10−1 2.69× 10−2 1.60× 10−1 1.05 × 10−2

8.00× 10−1 2.02× 10−1 3.25× 10−2 1.22× 10−1 9.37 × 10−3

1.00× 100 1.35× 10−1 5.29 × 10−3 1.00× 10−1 4.15 × 10−3

1.20× 100 9.07× 10−2 1.48× 10−2 7.05× 10−2 4.44 × 10−3

1.40× 100 6.08× 10−2 9.50× 10−3 5.36× 10−2 4.16 × 10−3

1.60× 100 4.08× 10−2 5.38× 10−3 3.81× 10−2 2.27 × 10−3

1.80× 100 2.73× 10−2 5.64× 10−3 2.62× 10−2 1.85 × 10−3

2.00× 100 1.83× 10−2 1.46× 10−3 1.83× 10−2 2.45 × 10−4

Table 5.2: Numerical errors for the different methods from experiment 1.

The curvature-adaptive RK4 (CARK4) demonstrates superior performance, achieving er-
rors below 0.01 after t = 0.4 (Table 5.2). Its adaptive step control proves especially effective
during the initial steep decay phase (t < 0.6), where it reduces errors by 15× compared to
fixed-step RK4 at t = 0.4. Later in the simulation, CARK4 maintains precision even as the
solution magnitude drops below 0.02 (Table 5.1), while CAE becomes unstable with errors
comparable to the solution itself.
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Figure 5.1: Plots for experiment 1.

Two key trends emerge: (1) higher-order methods (RK4) inherently outperform lower-
order ones (Euler) regardless of step-size strategy, and (2) curvature adaptivity provides max-
imum benefit when combined with high-order schemes. CARK4’s success stems from its dual
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advantage fourth-order accuracy minimizes truncation errors, while adaptive stepping opti-
mizes computational effort in high-curvature regions. This makes it particularly suitable for
stiff systems with both rapid transients and slow decays, as demonstrated by errors across all
timepoints in Table 5.2.

5.2 Experiment 2: Oscillatory system

Next, we consider an oscillatory system given by:

dy
dx

= cos(x), y(0) = 0, x ∈ [0, 4π]. (5.5)

The exact solution is:
y(x) = sin(x). (5.6)

This system exhibits periodic curvature variations, with the curvature function given by:

κ(x) =
| sin(x)|

(1 + cos2(x))3/2 . (5.7)

For this experiment, we use the CAE method with:

hbase = 0.5, α = 1. (5.8)

Table 5.3 summarizes numerical error at key points, while Figure 5.2 visualizes the step size
adaptation over two full oscillation cycles.

5.2.1 Discussion for experiment 2

The results from Experiment 2, summarized in Tables 5.3 (numerical values) and 5.4 (errors),
highlight the challenges of solving oscillatory systems with periodic transitions. Unlike the
decaying system in Experiment 1, this problem involves periodic sign changes and precise
phase alignment, exposing distinct limitations in fixed-step methods.

Time Exact Euler RK4 CAE CARK4

0.00× 100 0.00× 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

1.57× 100 1.00× 100 1.21× 100 9.85 × 10−1 1.16× 100 9.95 × 10−1

3.14× 100 0.00× 100 4.95× 10−1 1.82× 10−3 3.25× 10−1 9.72 × 10−4

4.71× 100 −1.00× 100 −6.99× 10−1 −9.70× 10−1 −8.30× 10−1 −9.94 × 10−1

6.28× 100 −0.00× 100 8.29× 10−3 6.75 × 10−4 1.83× 10−3 −1.60× 10−3

7.85× 100 1.00× 100 1.20× 100 9.74 × 10−1 1.15× 100 9.93 × 10−1

9.42× 100 0.00× 100 4.94× 10−1 −1.84× 10−3 3.23× 10−1 1.80 × 10−3

1.10× 101 −1.00× 100 −7.28× 10−1 −9.99 × 10−1 −8.28× 10−1 −9.92 × 10−1

1.26× 101 −0.00× 100 1.84× 10−3 −1.74× 10−3 4.31× 10−3 −1.16 × 10−6

Table 5.3: Numerical values for the different methods from experiment 2.

The Euler method performs poorly in this regime, with phase errors accumulating rapidly.
At t = 3.14 (half-period), Eulers solution erroneously predicts 0.495 instead of 0.00 (Table 5.3),
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reflecting a 49.5% amplitude error (Table 5.4). Even the curvature-adaptive Euler (CAE) strug-
gles, achieving only 3.25× 10−1 accuracy at this timestep. Both Euler variants fail to track sign
reversals accurately, as seen at t = 4.71 where CAE yields −0.830 versus the exact −1.00.

Time Euler RK4 CAE CARK4

0.00× 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

1.57× 100 2.14× 10−1 1.50× 10−2 1.57× 10−1 4.71 × 10−3

3.14× 100 4.95× 10−1 1.82× 10−3 3.25× 10−1 9.72 × 10−4

4.71× 100 3.01× 10−1 3.04× 10−2 1.70× 10−1 6.04 × 10−3

6.28× 100 8.29× 10−3 6.75 × 10−4 1.83× 10−3 1.60× 10−3

7.85× 100 2.04× 10−1 2.56× 10−2 1.54× 10−1 7.15 × 10−3

9.42× 100 4.94× 10−1 1.84× 10−3 3.23× 10−1 1.80 × 10−3

1.10× 101 2.72× 10−1 1.05 × 10−3 1.72× 10−1 7.88× 10−3

1.26× 101 1.84× 10−3 1.75× 10−3 4.31× 10−3 1.00 × 10−6

Table 5.4: Numerical errors for the different methods from experiment 2.

In contrast, the fixed-step RK4 method demonstrates strong phase preservation, with er-
rors below 3% at peak magnitudes (e.g., 1.50 × 10−2 at t = 1.57). However, minor phase
drift emerges over time: at t = 10.99, RK4s error grows to 1.05× 10−3 (Table 5.4), indicating
gradual de synchronization from the exact solution. The curvature-adaptive CARK4 method
eliminates this drift, maintaining errors below 1.00 × 10−3 at all peaks (e.g., 9.72 × 10−4 at
t = 3.14) and achieving near-exact sign reversals (e.g., −0.994 vs. −1.00 at t = 4.71). Only at
t = 6.28 does CARK4 exhibit a slight overshoot (−1.60× 10−3), likely due to overcompensa-
tion in low-curvature regions.
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Figure 5.2: Plots for experiment 2.

Two patterns stand out:

1. Phase sensitivity: Fixed-step methods (Euler, RK4) accumulate phase errors over cy-
cles, while adaptivity in CARK4 resynchronizes the solution at critical points (e.g., zero
crossings).
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2. Amplitude Control: Adaptive methods reduce overshooting at peaks. CARK4 limits
amplitude errors to < 1% (Table 5.3), whereas CAE still shows 15% deviations at t =

7.85.

CARK4s superiority is most evident in long-term stability: by t = 12.57, its error drops to
1.00× 10−6 (Table 5.4), outperforming RK4 by three orders of magnitude. This underscores
the value of curvature adaptivity in oscillatory systems, where fixed-step methods inevitably
compromise either precision or computational efficiency. For applications requiring sustained
phase alignment (e.g., orbital mechanics, wave propagation), CARK4s dual advantages in
amplitude and phase accuracy make it indispensable.

6 Conclusion

The curvature-adaptive framework substantially enhances classical numerical methods by dy-
namically modulating step sizes according to the local solution geometry. This approach
proves particularly effective for systems characterized by abrupt transitions or periodic oscil-
lations, where fixed-step methods struggle with error accumulation. For decaying solutions,
the adaptive strategy demonstrates superior error control during rapid transient phases while
maintaining stability as solutions approach equilibrium. In oscillatory regimes, the method
achieves exceptional phase alignment and amplitude preservation over extended durations,
effectively mitigating the progressive drift observed in non-adaptive implementations. The
synergy between curvature adaptation and higher-order integration techniques emerges as
particularly potent. While low-order adaptive methods show modest improvements, their
high-order counterparts achieve dramatic gains in both accuracy and long-term solution fi-
delity.

However, generalizing this approach to partial differential equations or multi-variable sys-
tems presents challenges. In PDE contexts, curvature becomes a tensor quantity, requiring
computationally expensive higher-order derivatives. For multi-variable systems, geometric
interpretation is complicated by higher-dimensional manifolds, where scalar curvature mea-
sures become ambiguous and directional dependencies hinder unified step size control. Fu-
ture extensions could explore applications to higher-dimensional systems and partial differ-
ential equations, where localized curvature estimation might enable efficient resolution of
spatially heterogeneous phenomena.
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