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Abstract. This paper introduces an innovative framework for dynamically optimizing
consumption and investment decisions by integrating a risk penalization mechanism
directly into the systems dynamics. Leveraging Forward-Backward Stochastic Differ-
ential Equations (FBSDEs), our approach enables adaptive risk regulation in response
to market fluctuations. We formulate the optimization problem, analyze the associated
adjoint equations, and derive explicit characterizations of optimal strategies. Numerical
simulations across multiple scenarios validate the robustness of the proposed method,
demonstrating a significant reduction in terminal wealth variance compared to classi-
cal approaches. Our model thus offers a promising advance in dynamic financial risk
management.

Keywords: FBSDE, Dynamic Risk Penalization, Dynamic Optimization, Portfolio Man-
agement, Stochastic Control.
2020 Mathematics Subject Classification: 39A10, 67B89. MSC2020

1 Introduction

The dynamic optimization of economic decisions under uncertainty is a fundamental chal-
lenge in modern mathematical finance. Since the pioneering work of Merton [12], who for-
mulated optimal consumption and portfolio allocation rules in a continuous-time framework,
stochastic control models have evolved to address increasing market complexity and risk sen-
sitivity. This foundational approach was rigorously developed by Karatzas and Shreve [8],
who established a comprehensive mathematical theory of optimal investment under uncer-
tainty. Yong and Zhou [16] extended this theory by incorporating Hamiltonian systems and
portfolio constraints, broadening its applicability and analytical depth. In parallel, Fouque
et al. [5] emphasized the necessity of accounting for stochastic volatility to capture the time-
varying nature of financial risk.
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A major methodological shift occurred with [1], who introduced the stochastic maximum
principle, enabling problem formulations based on adjoint equations. This approach led to the
development of Backward Stochastic Differential Equations (BSDEs) by Pardoux and Peng [13]
and was further expanded by Ma and Yong [11], who proposed Forward-Backward Stochastic
Differential Equations (FBSDEs), offering a unified framework for dynamic control problems.
The formal structure of no-arbitrage pricing and market viability was established by Bjork [2],
while the Hamilton-Jacobi-Bellman (HJB) framework was deeply explored by Fleming and
Soner [4], particularly through the theory of viscosity solutions.

In contrast to the HJB framework, the stochastic maximum principle provides a more
tractable method for deriving optimality conditions, especially in high-dimensional or non-
Markovian settings. While HJB relies on solving fully nonlinear partial differential equations,
Pontryagins principle transforms the problem into a system of forward-backward stochastic
differential equations (FBSDEs). This formulation is better suited for numerical implementa-
tion and real-time adaptation in complex financial environments. Extensions of BSDE theory
to quadratic structures, as in [9], have proven particularly relevant for mean-variance opti-
mization and risk-penalized models.

Recent advances have further solidified the role of FBSDEs in financial modeling. [7] intro-
duced deep learning techniques to solve high-dimensional PDEs, while [3] applied FBSDEs
to model market impact under partial information in a mean-field framework. [10] extended
this methodology to markets with jumps and stochastic volatility. Practical solvability has
also improved with numerical techniques such as the regression-based Monte Carlo scheme
proposed by [6].

Building on these developments, our contribution introduces a novel framework in which
dynamic risk penalization is embedded directly into the backward component of the FBSDE
system, rather than being statically added to the objective function. This formulation enables
real-time adaptation to market shocks through the coupling between forward wealth dynam-
ics and backward value processes. Rooted in the stochastic maximum principle, our model
yields tractable optimality conditions and self-regulating strategies that balance performance
and robustness. Numerical simulations confirm the approachs effectiveness in stabilizing ter-
minal wealth under volatility shocks.

2 Modeling

We model and optimize a firm’s cash flows using Forward-Backward Stochastic Differential
Equations (FBSDEs). The application is illustrated through the pricing of an insurance contract
on two assets:

® A risk-free, bounded, and deterministic asset with interest rate r;.

* A risky asset following a geometric Brownian motion S;, with drift y; and volatility o;.

The functions r;, p¢, and 0; are bounded, deterministic, and satisfy r; > € > 0 for all t € [0, T].

2.1 Portfolio wealth dynamics

Let (Q), F,IP) be a probability space equipped with a filtration (F;),-, satisfying the usual
conditions (right-continuity and completeness). The wealth process (}i)tg[oﬂ is governed by
a stochastic differential equation (SDE) that accounts for both the risk-free and risky assets.
We formulate this as a lemma.
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Lemma 2.1 (Portfolio wealth dynamics). Under the assumptions of the model, the portfolio wealth
process X; evolves according to the following stochastic differential equation:
{ dXt = (TtXt + ptut) dt + (Ttutth,
Xo = po,
where 1y is the risk-free interest rate, py = yy — 1y is the risk premium, uy is the amount invested in

the risky asset, oy is the asset’s volatility, and Wy is a standard Brownian motion defined on the filtered
probability space (Q), F, (Ft)t>0, P).

Proof of the wealth dynamics. Assumptions and definitions:

teo,T], 2.1)

* Risk-Free Asset B;: The risk-free asset follows the ordinary differential equation

dB
7t = T’tdt, BO = 1, (22)
B;

where 7; is the deterministic interest rate.

* Risky asset S;: The risky asset follows a geometric Brownian motion:

ds
?t = wdt + o, dW;,  So >0, (2.3)
t
where p; is the expected return, o; > € > 0 is the volatility, and W; is a standard

Brownian motion.

e Portfolio allocation: At each time ¢, the investor allocates u; of their wealth X; to the
risky asset, and the remaining X; — u; to the risk-free asset.

e Portfolio wealth evolution: The variation in wealth over an infinitesimal time interval

dt is given by:
aX; = (X¢ — ut)dBBtt + utistt. (2.4)
Substituting asset dynamics:
dBl? = rdt, (2.5)
dSS: = wdt + oy dW, (2.6)
into equation (2.4), we get:
dX; = (X¢ — up)redt + uy (pedt + ordWy). (2.7)
Simplifying:
AXy = 1 Xedt — reuedt + uppnpdt + crudWe. (2.8)
Grouping terms with dt:
adXy = (1 Xe + (ue — re)uy) dt + oy dW. (2.9)
Recognizing p; = py — r; as the risk premium, the equation becomes:
adX; = (1 Xe + pruy) dt + oyudWy. (2.10)

¢ Initial Condition: At time t = 0, the initial wealth is Xy = po.
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2.2 Optimization problem

The insurer must choose admissible strategies (c;, u;) that maximize the expected utility of
cash flows (discounted at a personal rate ), while minimizing the variance of final wealth. The
optimization is subject to a budget constraint in expectation: the present value of consumption
flows must equal the initial premium py.

T
E [ / e J sl ds] = po, (2.11)
0

where As > 0 is a time-varying discount rate reflecting the insurers dynamic cost of capital
or stochastic risk adjustments. This condition represents an intertemporal budget constraint,
ensuring that the expected discounted value of consumption matches the initial premium py
over the investment horizon.

The control strategies are modeled as progressively measurable processes u; and c;, satis-

tying:
T
u € A= {u . E [/ |ut\2dt] < oo}, (2.12)
0

T
¢t € A= {c: E [/0 c%dt} <oo}. (2.13)

These conditions ensure the existence of a robust solution to the FBSDE system.
K
By incorporating the dynamic penalty term E(utXt)z directly into the backward com-

ponent of the FBSDE, the model achieves real-time risk regulation. This approach aligns
optimization and risk control intrinsically, without relying on external constraints.

This quadratic penalization reflects a trade-off between expected return and marginal risk
exposure, where the investment cost scales with wealth. As the agents wealth increases,
larger investment positions are naturally taken, which proportionally increases potential risk,
justifying the need for dynamic penalization. Such wealth-dependent penalty structures are
widely used in risk-sensitive control theory, particularly in mean-variance frameworks and
Linear-Quadratic-Gaussian (LQG) models [9], where risk is regulated through quadratic cost
terms on the control.

The parameter x > 0 governs the agents risk sensitivity: smaller values promote return-
oriented strategies, while larger values encourage conservative behavior by amplifying the
penalty on risky investment allocations.

2.2.1 Formulation of the optimization problem

We assume that the coefficients of the FBSDE system are Lipschitz continuous and satisfy a lin-
ear growth condition. Under such assumptions, the system admits a unique adapted solution
(X, Y1, Zt), as shown by Pardoux and Peng [13] and Yong and Zhou [16]. The optimization
problem can be formulated as follows:

T
r(na;dE [ / e P'F(c;X;) dt — (X1 — E[X71] )2} (2.14)
c,u 0

Subject to the constraints:

T t
E[Xr] =d, E [/ e~ o AsdsctXtdt] = po,
0
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where d is the terminal wealth target and py is the initial premium amount. In this framework,
the Lagrange multipliers associated with the constraints appear as adjoint variables in the
stochastic Hamiltonian, following the stochastic maximum principle.

2.2.2 Introduction of Lagrange multipliers
The constraints on Xt and the cash flows are incorporated into the objective function using
Lagrange multipliers § and #. The associated Lagrangian function is defined as:

L(c,u,é,n)=E /T e PF(eXy) dt — (X7 — IE[XT])2

0

(2.15)
+(E[Xt] —4d)+7 <]E {/OTe_ fot)‘sdsctXtdt} — p0> ]

Where:

e ¢ is the multiplier associated with the terminal wealth constraint E[X7] = d, penalizing
deviations from the target 4.

* 7 is the multiplier associated with the cash flow constraint, ensuring that the expected
discounted value of consumption matches the premium py.

The term (X7 — E[X1])? can be expanded as:
(X7 — E[X1])* = X} — 2X7E[X1] + (E[X1])*. (2.16)
By introducing 4, the term 6(E[X7] — d) is added, so the combined expression becomes:
— (Xr — E[X1])* + 6(E[X7] — d). (2.17)

Substituting E[X7]| = d into the above expression yields:

— X%+ (2d + 0) X7 — (d* + 5d). (2.18)
Letting ¢ = d and § = 7}, the quadratic term simplifies to:
(X —a)? (2.19)
We now consider the cash flow constraint:
E [ /O Lo finsg,x, dt] = po. (2.20)

Multiplying this constraint by 77 and moving the right-hand side yields the linear term:

T t
nE [/0 e o dsctXtdt} — 11po. (2.21)

This is a simple control adjustment and does not alter the quadratic structure of the prob-
lem.
Combining all terms, the final formulation becomes:

T
max [E [/ e PIF(ciXy) dt — é(XT —a)*+q(Yo—d)|, (2.22)
(cu) 0 2

where:
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e J(Xr —a)? is the quadratic regularization on the terminal wealth Xr.

* (Yo — d) adjusts the budget constraint via the initial value Y{ of the backward compo-
nent.

The parameters ¢ and 7 are tuning parameters balancing performance and constraints. Here,
Yy is the total discounted value of consumption at the initial time:

T "
Y, = E { / e~ o Adte X ds ‘ fo} . (2.23)
0

The admissible strategies (ct, u;) must satisfy the necessary integrability conditions to en-
sure the existence of a robust solution for the wealth process X; and the discounted cash flow
process Y; defined for all t € [0, T:

T
YtzlE[ / e—foArchsXsds’ft]. (2.24)
t

The stochastic constraint is enforced using a Lagrange multiplier. However, we do not explore
the dual problem formulation or constraint qualification conditions (e.g., Slaters condition),
which are left for future research.

2.2.3 Definition of an admissible strategy

An admissible strategy is defined as a pair of adapted processes (ct, ), with respect to a
filtration (Ft),-(, such that equation (2.1) admits a strong solution (X;);c(, 7)- This solution
must satisfy the following integrability conditions:

1. Condition on wealth X;:
T
E / 1,2 dt < oo, (2.25)
0

This condition ensures that the wealth process X; is square-integrable over the interval
[0, T], which is essential for model stability.

2. Condition on discounted cash flows Y;:
T ; 2
E </ 6_‘[0 As dsCtXt dt> < 00. (226)
0

This condition guarantees that the discounted value of the cash flows is well-defined
and square-integrable.

3. Condition on penalization of excessive investment:

E [ /0 T(utxt)zdt} < co. (2.27)

This condition ensures that the penalization term is well-defined and remains bounded.
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For each admissible strategy (c;, u;), the value process (Yt)te[o, 1) defined by equation (2.22),
satisfies the following backward stochastic differential equation (BSDE):

K
{ dYt = <)\th — CtXt — E(utXt)2> dt + Zt th, (2 28)

Yr =0,
where:
* ¢;: the opportunity cost or instantaneous financial withdrawal;

* A+Y;: represents the evolution of the present value of future cash flows;

K . . . . .
* 5 (u:X;)?: penalizes excessive investment and directly influences the dynamics of Y;;

* Z;: an (F});5q-adapted process, square-integrable with respect to df x IP on [0, T| x Q.

The system (X;, Y, Z;) thus integrates feedback from cost into decision-making. The control
u; affects not only the wealth trajectory but also the cost dynamics through a quadratic pe-
nalization. This approach makes the control endogenous and self-regulating: decisions made
today account for both future outcomes and the immediate cost of risk exposure.

Construction of Y; from a martingale representation
To better understand the dynamics of Y;, we define the following quantities:

* Xt =exp (— fot As ds): the discount factor at time t.

e M;=E { fOT XsCs Xs ds ‘ ]:t}: an (}"t)tzo-adapted integrable martingale.
Using the martingale representation theorem, there exists a unique stochastic process (¢s),-
such that: -

M, 1 (T
Y, =L = [ xeesXsds. (2.29)
Xt Xt Jo

Dynamics of Y; in terms of ¢
Differentiating (2.27) with respect to ¢, we obtain:

ay; = (/\th — Xy + E(Mtxt)z) dt + P AW;. (2.30)
2 Xt

Setting Z; = %, we conclude that the process (Z) is (Ft);¢-adapted, square-integrable,
and satisfies the BSDE:

ay, = ()\th — o Xy + g(”txt)2> dt + Z; dW. (231)

3 Formulation of the optimization problem

Assuming that the utility function of the decision-maker follows a HARA (Hyperbolic Abso-
X7
lute Risk Aversion) structure, we consider F(X) = o with ¢ € [0, 1], which captures the

investor’s relative risk aversion. This function is strictly concave and homogeneous of degree



150 T. Kayembe, P. Mubenga Mbuyi, B. Bosonga & E. Mbuyi

7, allowing for intertemporal optimization behavior where marginal satisfaction decreases
with wealth, while maintaining a constant relative risk aversion.
The associated optimization problem is formulated as:

T Y
r(rcli3<lE g(Xr) +h(Yo) —|—/0 e_ﬁt(ct}j) dt] , (3.1)

where:

* o(X7) = —%(XT — a)?: final objective function;

e n(Yp) = (Yo — d): penalty function associated with the constraint E[X7] = d, where Y
represents the total discounted value of future cash flows at time 0;

* (X, Y:,Z;): solution of the coupled Forward-Backward Stochastic Differential Equation
(FBSDE) system.

By applying Pontryagin’s maximum principle, we define the Hamiltonian associated with this
optimal control problem. This formalism enables the characterization of optimal strategies by
coupling the forward dynamics (wealth evolution) and the backward dynamics (discounted
cumulative cost) through adjoint variables and first-order conditions.

Before explicitly formulating the Hamiltonian, we recall the structural roles of the adjoint
components involved:

¢ p;: adjoint variable associated with the forward dynamic X;, representing the marginal
value of wealth and the sensitivity of the objective function to changes in state;

* g;: adjoint variable associated with the backward component Y}, capturing the marginal
impact of anticipated future costs on current decisions;

¢ k;: diffusion coefficient linked to the stochastic component Z; of the backward equation.
According to the martingale representation theorem, it satisfies: Z;: adapted projection
of the noisy part of the backward equation onto dW;.

These three elements are central to the coupled forward-backward system, ensuring coherence
between wealth evolution, cost regulation, and risk adjustment.

3.1 Hamiltonian expression

The Hamiltonian is written as a function of the state, control, and adjoint variables:

X )7
H(t/ X/ Y/ ZI u,c, Pz 11) = ei'Bt <(Ct,)/t)> + (T’tXt + Ptut)Pt + qtatut/

K
+ <)\th — CtXt + EM%X%) qt. (32)

The agent’s optimization problem consists of finding the optimal pair (¢, #;) that maximizes
the Hamiltonian while respecting the system dynamics.
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3.2 Adjoint equations

The necessary conditions for optimality imply solving the following adjoint equations.

1. Adjoint equation for p; (associated with X;).

According to the stochastic maximum principle, the adjoint equation for p; is:

oH
dpt = _ai)it dt + kt th

Computing g—g:

o Utility term:

0 g (0 Xp)7 _ _
Ry e AN i VA R 71
X, (e - ) e Plye X .

¢ Drift term:

d
T&(ptrtxt) = Pttt

* Penalty term:
Jd (K
- (*(MtXt)2> = Ku%Xt.

¢ Consumption term:

7(CtXt) = C¢.

Grouping all terms, we obtain:

{dpt = — (ei.Bt,),CtX;y_l + rtPt — tht + KM%Xt> dt =+ kt th, (33)

pr = gx(X1) = (X1 —a).

Here, p; represents the sensitivity of the wealth process X; to the objective function. A
high value of p; indicates that small variations in X; significantly affect the optimization
criterion.

Remark 3.1. Terminal condition and quadratic structure.

The terminal condition, pr = —4(Xt — a), penalizes deviations from a target terminal
wealth g, acting as a gradient that influences the adjoint process p; and the investment
strategy. The initial condition, g9 = 7, reflects the marginal value of the backward pro-
cess Y;, which may be linked to prior information or imposed constraints.

This sensitivity is particularly relevant in backward schemes, where small perturbations
at the terminal time can propagate and amplify through the adjoint dynamics, possi-
bly causing numerical instability if J is too large or poorly calibrated. Regularization
techniques may be helpful in such cases.

2. Adjoint equation for g; (associated with Y}).

Applying the same approach, we obtain:

{th = — Mg dt,
q0 = hy(Yo) = 1.
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Here, q; represents the shadow value of future cash flows, quantifying how changes in
the backward component Y; affect profit maximization.

The terminal and initial conditions are derived from the objective functions g and #, en-
suring consistency between the dynamic optimization process and the desired boundary
values.

3.3 Explicit solution

We consider the equation dg; = —Aq;dt, which is a linear ordinary differential equation (ODE)
with variable coefficients (A;).
Its explicit solution is:

qr = ne- f(; As ds (3.5)

4 Optimal strategy

We consider a stochastic optimal control problem in which the objective is to maximize the
expected utility from intertemporal consumption while accounting for the stochastic dynamics
of the system, modeled by a FBSDE with integrated dynamic risk penalization.

The optimization problem consists in maximizing the following objective function:

T v
E [/0 e_ﬁt(ct};t)dt — g(XT —a)’ + Y.

4.1 Derivation of the optimal consumption strategy ¢c;

The optimal consumption strategy is derived from the maximum condition applied to the
Hamiltonian associated with the FBSDE system. The consumption c¢; appears explicitly in two
terms of the Hamiltonian:

X7
H(t, X,Y,Z, u,c, p,q) = e_ﬁt(ctlyt) — cr X4q.

To find the value of c; that maximizes the Hamiltonian, we compute the partial derivative

with respect to c;:
0H 9 [ _g(cXy)"
= PEAETE 0 Xa ) .
act act <e 0% Cteq

We compute each term:

¢ For the utility term:

e

e For the linear consumption term:
a% (—CtXtEI) = —Xiqt.

The first-order condition (FOC) is then:

e_ﬁtX?cfl — Xiq; = 0.



FBSDE Optimal Control with Risk Penalization: A Pontryagin Framewor 153

Solving for c; gives the optimal consumption:

1/(y=1)
6= (g{) L @)

This expression shows that the optimal consumption depends on:
¢ The opportunity cost q;, which reflects the marginal value of future consumption;
¢ The current wealth X;, which represents the agent’s capacity to consume;
e The time preference via the discount factor e~F".

For a risk-averse agent with o € [0, 1], the consumption is a concave function of wealth, illus-
trating a prudent behavior: as wealth increases, consumption increases, but at a decreasing
rate.

Since (At), is assumed to be non-negative and bounded, the integrability condition for the
backward process (2.24) is satisfied. Furthermore, in our formulation, dynamic risk penaliza-
tion appears directly in the backward equation through a quadratic term embedded in the
dynamic cost function.

4.2 Derivation of the optimal investment strategy 1,

The optimal investment strategy is obtained by applying the first-order condition to the
Hamiltonian with respect to u;:

oH )
9 = ptpr + qeoruy + ku Xi gy

Details of the derivations:

* %, ((reXs + prur) pt) = pepss

* a%, (QtUtut) = 40t

D (K, 252 — 2
* o (5uiX?qe) = ku X7q;.

Setting the FOC to zero:
pept + 4e0t + xku X7qr = 0.

Solving for u;, we get:

0, — _ Pipi+0iq;
Ut KXtht ' (4'2)

This expression indicates that the optimal investment strategy depends on:

* opt, representing the marginal impact of investment on future wealth evolution, acting
as an economic signal weighted by the adjoint sensitivity py;

* g:01, which captures the impact of diffusion noise through the martingale component Z;,
adjusted by the opportunity cost gy;

* The dynamic penalization term xX?q;, acting as a real-time risk regulator, where:
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— « is the risk-sensitivity parameter;
- X% implies wealthier agents face higher penalties;

- g acts as a shadow value for future costs.

This strategy implements a self-regulating dynamic risk mechanism: it balances the incen-
tive to invest (via p;p; and ;) with a prudence term that scales with exposure (via X?) and
backward-looking expectations (via g;).

4.3 Identification of the diffusion

The martingale consistency condition implies:

ki = —ﬂpt- (4.3)

Ot

This results from matching the dW; terms in the It6 expansion of p;, ensuring that the stochas-
tic part remains a true martingale.
Full solution of the BSDE for p;:

P = —fp. (4.4)

Substituting this relation into the adjoint equations leads to a decoupled system of linear
stochastic differential equations.
Backward equation for p;:

dPt = —rtptdt — %ptdwt, (45)
pr = 8x (X1) = =6 (Xr —a).
Similarly, for g;, we have:
{ dq, = Awqdt, (4.6)
qo = 1-
The unique solution for g; is:
qr = 1 exp (fot Asds> : 4.7)

To obtain explicit and analytically tractable solutions for the adjoint process p;, we assume
that it admits an affine structure with respect to the state variable X;, of the form:

pr=f(H)Xi+g(t). (4.8)

The affine structure p; = f(t)X; + g(t) is motivated by the linear-quadratic (LQ) nature of the
control problem. Under these structural assumptions, classical results in stochastic control
theory, particularly those of Yong and Zhou [16] and Bismut [1], guarantee that the adjoint
process admits an affine representation. This transformation reduces the BSDE to a tractable
system of ODEs, including a Riccati equation for f(¢).

(f () +2ref (1) Xe + pruef (t) + 8 (t) +1:g () = 0. (4.9)
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The martingale consistency condition gives:

8 (f (1) Xo+g (1) = £ (1) o (410

This leads to the following differential equations:

{fwz(ﬁ—mgﬂw, (4.11)
f(T)=—9.

s (1) = (£ —
g(t) = (o'% n)g (1), (4.12)
T) .
The explicit solutions are:

f(t)=—dexp (] (gé - 2rs) ds) , te0,T). (4.13)

g(t) = daexp (J (gé 1) ds), telo,T] (4.14)

Finally, the optimal control #; is given by:

G, — P 8(t)
Uy = _KU%tXf T kf(HeE” (4.15)

¢ The first term reflects the risk-adjusted return response <%)
t
e The second term incorporates terminal effects via g(t) and f(t).

The linearity of i; in X; ensures that the wealth process follows a linear SDE with bounded
coefficients, guaranteeing integrability of X;. The optimal strategies (i, ¢;), solutions to equa-
tions (4.1) and (4.15), completely characterize problem (3.1) under dynamics (2.1)—(2.20). This
construction rigorously combines Pontryagin’s principle, adjoint equations, and backward
quadratic penalization, providing a robust framework for optimization under uncertainty.

Remark 4.1. (Ill-posedness and regularization for low wealth levels)

The problem becomes ill-posed as X; — 0, due to the presence of a potentially unbounded
inverse dependence on wealth. To ensure robustness and numerical stability, we impose a
minimal wealth constraint such that X; > ¢ > 0. Alternatively, a regularized control strategy
can be adopted in the vicinity of zero wealth to mitigate explosive behavior.

The following section focuses on numerical simulations based on realistic economic scenarios.
The goal is to validate the behavior of the proposed strategies and study their sensitivity to
key market parameters (volatility, interest rates, risk aversion, etc.).

5 Simulations

To illustrate the impact of dynamic risk penalization on optimal decision-making, we simulate
various economic scenarios. These experiments allow comparison with classical models and
highlight the advantages of directly integrating penalization into the backward component
of the FBSDE system. We analyze the effect of varying «, introducing volatility shocks, and
changing the initial wealth level.
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5.1 Methodology

To simulate the coupled Forward-Backward Stochastic Differential Equations (FBSDEs), we
use a discretization scheme combining a forward Euler-Maruyama method for the state equa-
tion and a backward regression-based approach for the BSDE. This scheme is well-suited
under Lipschitz continuity and ensures a trade-off between accuracy and computational cost.
The time step At = 0.01 (i.e., 100 steps over a one-year horizon) offers acceptable error bounds,
with convergence orders O( v/At) for the forward SDE and O(At) for the backward part (see
Gobet et al., 2005; Han & Jentzen, 2018). We simulate 5,000 independent trajectories to guar-
antee statistical robustness and accurate estimation of expectations and variances.
All simulations are performed using Python, with key libraries including:

¢ NumPy for array computation.

SciPy for numerical integration and optimization routines.

Matplotlib for visualization and result analysis.

Numerical method: Euler-Maruyama scheme (adapted to FBSDEs).

Time step: dt = 0.01 (i.e., 100 steps for a 1-year horizon).

Number of trajectories: 5,000 simulations to ensure statistical convergence.

¢ Software: Python (libraries used: NumPy, SciPy, Matplotlib).

5.2 Simulation scenario setup

To test the validity and performance of our model, several numerical scenarios have been
simulated. These allow us to analyze the evolution of wealth and optimal consumption-
investment behavior under various market conditions.

Unless otherwise stated, the following parameters are fixed across all numerical simulations:
ry = 0.02, uy = 0.05, 0y =02, p =0.03, k =05, vy =05 =003 Xo=1,T =1, dt =
0.01; M = 5000 trajectories.

For each scenario, we specify only the varying parameters. The same Brownian motion real-
izations are used for both strategies, ensuring a fair comparison.

The detailed results for each scenario are presented below.

5.2.1 Scenario 1: Baseline comparison without volatility shock

The aim of this scenario is to compare the classical investment-consumption optimization
approach (with static risk penalization) to our dynamic FBSDE (Forward-Backward Stochastic
Differential Equations) approach in a standard, shock-free market environment.

We evaluate:

¢ The stability of wealth trajectories over time,

* Performance in terms of expected wealth and terminal variance.



FBSDE Optimal Control with Risk Penalization: A Pontryagin Framewor 157

Evolution of Expected Wealth Over Time (Scenario 1)
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Figure 5.1: Evolution of wealth expectation (classical approach vs. FBSDE).

Distribution of Final Wealth at Time T (Scenario 1)
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Figure 5.2: Distribution of final wealth at time T.

Results Interpretation
The results of Scenario 1 clearly demonstrate that:

e Stability: The FBSDE approach ensures a more regular evolution of wealth over time,

* Risk reduction: At the final time, wealth variance is reduced by half under the FBSDE
approach,

¢ Performance preservation: Expected terminal wealth is nearly identical in both ap-
proaches, showing that risk stabilization is achieved without sacrificing return,

¢ Economic insight: The FBSDE’s dynamic penalization acts at every instant, naturally
limiting excessive risk-taking during the investment period.

Summary

In the absence of volatility shocks, the FBSDE approach provides enhanced stability, substan-
tial risk reduction, and preserves portfolio performance.
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5.2.2 Scenario 2: Volatility shock at time ¢ = 0.5

This scenario examines the response of classical and FBSDE approaches to sudden volatility
shocks during the investment period.
We observe:

¢ The ability of each strategy to adapt to a sudden increase in risk,
¢ The impact on expected wealth and terminal variance.
We observe volatility shocks before t = 0.5 and after t = 0.5.

Evolution of Expected Wealth Over Time with Volatility Shock (Scenario 2)
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Figure 5.3: Evolution of expected wealth over time with volatility shock.

As illustrated in Figure 5.3, the volatility shock at t = 0.5 triggers a sharp divergence
between strategies: while the classical approach exhibits unstable wealth fluctuations (chaotic
behavior), the FBSDE strategy maintains controlled trajectories. This stability stems from the
quadratic penalization term xu?X? in the BSDE, which dynamically reduces risk exposure
during volatility spikes by tempering aggressive investments.

Distribution of Final Wealth at Time T with Volatility Shock (Scenario 2)
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Figure 5.4: Distribution of final wealth at time T with volatility shock.

Figure 5.4 shows that the FBSDE approach limits the final wealth dispersion even after a
sudden shock.
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Results Interpretation
The results from Scenario 2 show that:

¢ Immediate reactivity: The FBSDE approach adapts immediately to the sudden volatility
increase at t = 0.5,

* Risk control: After the shock, FBSDE maintains low variance, while the classical ap-
proach shows a significant increase in dispersion,

¢ Performance retention: Despite increased volatility, expected wealth is almost identical
between both strategies,

¢ Economic insight: FBSDE’s continuous adaptation allows proactive risk management,
unlike the classical model which passively suffers from sudden shocks.

Summary
In the presence of a sudden volatility shock, the FBSDE approach demonstrates superior
control over risk impact, while preserving expected performance. It clearly outperforms the
classical model in terms of stability and variance management.

5.2.3 Scenario 3: Variation of risk aversion y = 1.5,2.0,3.0

This scenario evaluates the impact of varying levels of risk aversion 7 on:
¢ Investment and consumption decisions,
* Wealth trajectory over time,
¢ The final wealth distribution X;.

The goal is to compare how well each strategy adapts to changes in investor risk preference.

Evolution of Expected Wealth Over Time (Scenario 3)
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Figure 5.5: Evolution of expected wealth over time.

Figure 5.5 shows that when 7 is high, the trajectory becomes less risky and the FBSDE ap-
proach smooths the paths better regardless of the value +.



160 T. Kayembe, P. Mubenga Mbuyi, B. Bosonga & E. Mbuyi

Distribution of Final Wealth at Time T (Scenario 3) for y=1.5
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Figure 5.6: Distribution of final wealth at time for v = 1.5.

Figure 5.6 shows that the classical approach yields a wide dispersion, while the FBSDE ap-
proach results in a clear reduction of variance.

Distribution of Final Wealth at Time T (Scenario 3) for y=2.0
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Figure 5.7: Distribution of final wealth at time for ¢ = 2.0.

Figure 5.7 shows that the FBSDE distribution remains more concentrated around the expected
value.



FBSDE Optimal Control with Risk Penalization: A Pontryagin Framewor 161

Distribution of Final Wealth at Time T (Scenario 3) for y=3.0
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Figure 5.8: Distribution of final wealth at time for o = 3.0.

Figure 5.8 shows that the FBSDE strategy consistently exhibits very low variance, whereas the
classical approach shows slight improvement but remains less stable.

Results Interpretation
The results from Scenario 3 reveal that:

* Effect of v: Higher risk aversion leads to more conservative strategies and naturally
reduces final wealth variance,

¢ Advantage of FBSDE: The dynamic FBSDE approach consistently reduces wealth dis-
persion, even for risk-seeking investors (low ),

* Dynamic adaptation: While the classical approach adjusts weakly to changes in -y, FB-
SDE reacts quickly and effectively, tailoring the strategy to the investor’s risk profile.

Summary
The FBSDE model offers superior adaptability to varying levels of risk aversion, ensuring

stable wealth trajectories regardless of the investor’s risk profile.

5.2.4 Scenario 4: Variation of initial wealth X; = 1.0,5.0,10.0

The aim of this scenario is to assess the impact of initial wealth X on:
¢ Wealth trajectory evolution,
¢ Final risk levels,
¢ Comparison between classical and FBSDE strategies.

We test several values of Xy to evaluate each strategy’s ability to adapt to initial market con-

ditions.
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Evolution of Expected Wealth Over Time for Different Initial Wealths

== Classical X0=1.0
Dynamic EDSPR X0=1.0
== Classical X0=5.0
—— Dynamic EDSPR X0=5.0
== Classical X0=10.0
—— Dynamic EDSPR X0=10.0

Expected Wealth

00 02 04 06 08 10
Time

Figure 5.9: Evolution of expected wealth over time for different initial wealths.

Figure 5.9 shows that higher values of Xy lead to enhanced stability and more effective growth
control in the FBSDE dynamics.

Distribution of Final Wealth at T for Initial Wealth X0=1.0
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Figure 5.10: Distribution of final wealth at T for initial Xy = 1.0.

Figure 5.10 shows that with Xy = 1.0, both approaches exhibit variance, but the FBSDE strat-
egy shows more concentrated results.
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Distribution of Final Wealth at T for Initial Wealth X0=5.0
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Figure 5.11: Distribution of final wealth at T for initial Xy = 5.0.

The gap widens, and the FBSDE approach significantly reduces wealth dispersion.

Distribution of Final Wealth at T for Initial Wealth X0=10.0
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Figure 5.12: Distribution of final wealth at T for initial Xy = 10.0.

Protection is maximized, with the FBSDE distribution nearly twice as tight as the classical
one.

Results Interpretation
The findings show that:

¢ Adaptability to initial wealth: FBSDE automatically adjusts the investment strategy to
the initial wealth level,

¢ Stability with large portfolios: Even for high Xy, FBSDE controls terminal variance
better than the classical approach, where deviations increase significantly,

* Robustness: FBSDE offers natural protection for high-wealth investors by scaling risk
exposure proportionally to capital.

Summary
As initial wealth increases, the FBSDE strategy maintains stronger control over risk and en-
sures more stable final wealth than the classical approach, which shows growing dispersion.
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5.2.5 Scenario 5: Variation of the penalization coefficient x = 0.1,0.5,1.0

This scenario studies how different levels of the risk penalization coefficient x affect:
¢ Optimal investment strategies,
e Wealth evolution X;,
¢ Final portfolio stability.

We compare both strategies across different penalization intensities.

Evolution of Expected Wealth Over Time for Different k (Scenario 5)
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Figure 5.13: Evolution of expected wealth over time for different .

The higher the «, the more stable and cautious the FBSDE trajectories become, whereas the
classical model remains less responsive to changes in x.

Distribution of Final Wealth at Time T for k=0.1 (Scenario 5)

== Cassical
5 3 Dynamic EDSPR

i 7'4 —‘2 0 II! 4 é
Wealth at T

Figure 5.14: Distribution of final wealth at time for x = 0.1.

Figure 5.14 shows that the classical approach is very volatile, while FBSDE already reduces
dispersion even with a low penalization.
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Distribution of Final Wealth at Time T for k=0.5 (Scenario 5)
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Figure 5.15: Distribution of final wealth at time for ¥ = 0.5.

The gap between the two strategies grows: FBSDE leads to a more concentrated final wealth
distribution.

Distribution of Final Wealth at Time T for k=1.0 (Scenario 5)
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Figure 5.16: Distribution of final wealth at time for ¥ = 1.0.

With high penalization, the FBSDE strategy yields a tightly concentrated final distribution,
whereas the classical approach remains more spread out and riskier.

Results Interpretation
The results from Scenario 5 show that:

o Effect of x: Lower x leads to aggressive strategies and higher variance, while higher x
produces more conservative strategies and significantly reduces variance,

¢ FBSDE advantage: FBSDE immediately adjusts investment based on the penalization
level and better stabilizes wealth, even with low «,

¢ Performance stability: Expected wealth remains comparable between both approaches.

Summary
The FBSDE approach naturally adapts to changes in risk penalization intensity x, ensuring
superior risk control and portfolio stability without sacrificing performance.
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5.3 Comparative summary with classical models

Compared to classical frameworks such as Merton’s model [12] and H]B-based formulations
[4,8], our FBSDE approach introduces several key innovations:

¢ Risk penalization is dynamic and endogenous (via x/ 2(uX;)?) rather than static and
externally imposed,

¢ The model is built on the stochastic maximum principle [1], avoiding the analytical
complexity of solving HJB PDEs in high dimensions,

¢ The coupling between forward (wealth) and backward (cost) components ensures real-
time feedback and adaptation to volatility,

* Numerical schemes such as regression-based Monte Carlo [6] and deep learning meth-
ods [7] enhance scalability and precision.

In short, this framework unifies decision-making and risk management, yielding self-regulating
strategies that outperform classical models under dynamic market conditions.

6 General conclusion and perspectives

This study introduces a dynamic portfolio optimization model using FBSDEs with embedded
risk penalization. The approach enables real-time adjustment to market volatility by inte-
grating a quadratic penalty directly into the backward component, leading to self-regulating
investment strategies. The model offers practical value for financial institutions by reducing
terminal wealth variance without sacrificing expected returns. It avoids the complexity of HJB
equations and remains tractable in high-dimensional settings.

The framework assumes deterministic coefficients and does not account for transaction
costs, liquidity constraints, or partial information. It may also become unstable when wealth
approaches zero, requiring regularization. Extensions could include: stochastic coefficients,
incomplete markets, learning-based solvers, and integration of market frictions to enhance
realism and applicability.
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