Non-informative Bayesian dispersion particle filter

Main Article Content

Ibrahim Sadok

Abstract

In this research paper, we attempt to introduce a new algorithm for filtering a state-space model. The observations of this algorithm follow an exponential dispersion model. The paper focuses here on the inclusion of non-informative prior knowledge in parameter estimation on nonlinear state-space models using an improper uniform prior measure. Therefore, a new particle filter is introduced. A conventional particle filter (PF) produces an incorrect sample from a discrete approximation distribution. This new algorithm is a regularized continuous distribution method that is obtained with the exponential dispersion model. A necessary and sufficient condition for the existence and convergence of the non-informative Bayesian estimator of dispersion parameters is established. This methodology extends the classical PF implemented by this new estimation method for the exponential dispersion model framework using a non-informative Bayesian approach. In order to evaluate the performance of the proposed algorithm, a case study with simulations and microscopic image restoration is carried out. The results exhibit a great performance improvement from the proposed approach

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Sadok, I. 2024. Non-informative Bayesian dispersion particle filter. Journal of Innovative Applied Mathematics and Computational Sciences. 3, 2 (Jan. 2024), 173–189. DOI:https://doi.org/10.58205/jiamcs.v3i2.1717.
Section
Research Articles

References

Alenlöv, J., & Olsson, J. (2019). Particle-based adaptive-lag online marginal smoothing in general state-space models. IEEE Transactions on Signal Processing, 67(21), 5571-5582. https://doi.org/10.1109/TSP.2019.2941066

Allen, R., David, G., & Nomarski, G. (1969). The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Zeitschrift Fur Wissenschaftliche Mikroskopie Und Mikroskopische Technik, 69(4), 193-221.

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. A. (2002). A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. https://doi.org/10.1109/78.978374

Booth, M. J. (2014). Adaptive optical microscopy, the ongoing quest for a perfect image. Light, Science and Applications, 3, 165-165. https://doi.org/10.1038/lsa.2014.46

Campillo, F. (2006). Modèles de Markov cachés et filtrage particulaire. DEA. Université Du Sud Toulon-Var.

Charnes, A., Frome, E. L., & Yu, P. L. (1976). The Equivalence of Generalized Least Squares and Maximum Likelihood Estimates in the Exponential Family. Journal of the American Statistical Association, 71(353), 469-171. https://doi.org/10.1080/01621459.1976.10481508

Chang, C. W., & Mycek, M. A. (2012). Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. Journal of Biophotonics, 5, 449-457. https://doi.org/10.1002/jbio.201100137

Chen, S. Y., Zhao, M. Z., Wu, G., Yao, C. Y., & Zhang, J. W. (2012). Recent Advances in Morphological Cell Image Analysis. Computational and Mathematical Methods in Medicine, 1-10. https://doi.org/10.1155/2012/101536

Chen, Z. (2003). Bayesian filtering: from Kalman filters to particle filters, and Beyond. Hamilton: McMaster University, Statistics, 182(1), 1-69.

Doucet, A., Godsill, S., & Anderieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197-208. https://doi.org/10.1023/A:1008935410038

Frigault, M. M., Lacoste, J., Swift, J. L., & Brown, C. M. (2009). Live-cell microscopy, tips and tools. Journal of Cell Science, 122(6), 753-767. https://doi.org/10.1242/jcs.033837

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711-732. https://doi.org/10.1093/biomet/82.4.711

Hobbs, N. T., & Hooten, M. B. (2015). Bayesian models: a statistical primer for ecologists. Princeton Univ. Press.

Hua, J., & Li, C. (2018). Distributed Outlier-Robust Bayesian Filtering for State Estimation. IEEE Transactions on Signal and Information Processing over Networks, 3(5), 428-441. https://doi.org/10.1109/TSIPN.2018.2889579

Jørgensen, B., Martinez, J. R., & Tsao, M. (1994). Asymptotic Behaviour of the Variance Function . Scandinavian Journal of Statistics, 21(3), 223-243.

Jørgensen, B. (1991). Exponential Dispersion Models. Monograph of IMPA, Rio De Janeiro.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–Journal of Basic Engineering, 82, 35-45. https://doi.org/10.1115/1.3662552

Lemoine, N. P. (2019). Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos, 128(7), 912-928. https://doi.org/10.1111/oik.05985

Letac, G., & Mora, M. (1990). Natural real exponential families with cubic variance functions. The Annals of Statistics, 18(1), 1-37. https://doi.org/10.1214/aos/1176347491

Mannam, V., Zhang, Y., Zhu, Y., Nichols, E., Wang, Q., Sundaresan, V., & Howard, S. S. (2022). Real-time image denoising of mixed Poisson–Gaussian noise in fluorescence microscopy images using ImageJ. Optica, 9(4), 335-345. https://doi.org/10.1364/OPTICA.448287

Marhaba, B., & Zribi, M. (2018). The bootstrap Kernel-Diffeomorphism Filter for Satellite Image Restoration. IEEE 22nd International Symposium on Consumer Technologies, Russia, 80-84. https://doi.org/10.1109/ISCE.2018.8408924

van Munster, E. B., van Vliet, L. J., & Aten, J. A. (1997). Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope. Journal of Microscopy, 188(2), 149-157. https://doi.org/10.1046/j.1365-2818.1997.2570815.x

Papini, A. (2012). A new algorithm to reduce noise in microscopy images implemented with a simple program in Pytho. Microscopy Research and Technique, 75(3), 334-342. https://doi.org/10.1002/jemt.21062

Sadok, I., Masmoudi, A., & Zribi, M. (2023). Integrating the EM algorithm with particle filter for image restoration with exponential dispersion noise. Communications in Statistics-Theory and Methods, 52(2), 446-462. https://doi.org/10.1080/03610926.2021.1915336

Sadok, I., & Masmoudi, A. (2022). New parametrization of stochastic volatility models. Communications in Statistics-Theory and Methods, 51(7), 1936-1953. https://doi.org/10.1080/03610926.2021.1934031

Sadok , I., & Zribi, M. (2022). Image Restoration Using Weibull Particle Filters. IEEE 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS), 1-6. https://doi.org/10.1109/PAIS56586.2022.9946893

Sadok, I., Zribi, M., & Masmoudi, A. (2023). Non-informative Bayesian estimation in dispersion models. Hacettepe Journal of Mathematics and Statistics, 1-18. https://doi.org/10.15672/hujms.1053432

Satpathy, S. K., Panda, S., Nagwanshi, K. K., & Ardil, C. (2022). Image restoration in non-linear filtering domain using MDB approach. International Journal of Computer and Information Engineering, 7(2), 328-332. https://doi.org/10.48550/arXiv.2204.09296

Shechtman, Y., Eldar, Y. C., Cohen, O., Chapman, H. N., Miao, J., & Segev, M. (2015). Phase Retrieval with Application to Optical Imaging. IEEE Signal Processing Magazine, 32(3), 87-101. https://doi.org/ 10.1109/MSP.2014.2352673

Van der Merwe, R., Doucet, A., Freitas, J. F. G., & Wan, E. (2000). The unscented particle filter. Advances in Neural Information Processing Systems, 13.

Wang, Y. L. (2003). Computational restoration of fluorescence images: noise reduction, deconvolution, and pattern recognition. Methods in Cell Biology, 72, 337-348. https://doi.org/10.1016/S0091-679X(03)72016-0

Similar Articles

You may also start an advanced similarity search for this article.