A decomposition analysis of Weyl's curvature tensor via Berwald’s first and second order derivatives in Finsler spaces A decomposition analysis of Weyl's curvature tensor in Finsler spaces
Main Article Content
Abstract
This research paper explores the decomposition of Weyl's curvature tensor through the lens of Berwald’s first and second-order derivatives in Finsler spaces. We analyze how Berwald’s differential geometry methods apply to Finsler spaces, which generalize Riemannian geometry and provide a more flexible framework for understanding curvature. The study highlights the importance of these decompositions in advancing both the theoretical aspects of Finsler geometry and their potential applications in physics, particularly in the realm of gravitational theories. Our findings offer a comprehensive understanding of the geometric structures that emerge in Finsler spaces, facilitating further research in high-dimensional and non-Riemannian manifolds.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Authors keep the rights and guarantee the Journal of Innovative Applied Mathematics and Computational Sciences the right to be the first publication of the document, licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License that allows others to share the work with an acknowledgement of authorship and publication in the journal.
- Authors are allowed and encouraged to spread their work through electronic means using personal or institutional websites (institutional open archives, personal websites or professional and academic networks profiles) once the text has been published.
References
[1] A. M. A. AL-Qashbari, A. A. Abdallah, and S. M. S. Baleedi, A study on the extensions and developments of generalized BK-recurrent Finsler space, International Journal of Advances in Applied Mathematics and Mechanics, 12(1) (2024), 38–45.
[2] A. M. A. AL-Qashbari and A. S. A. Saeed, Decomposition of curvature tensor field Rijkhrecurrent spaces and second order, Univ. Aden J. Nat. and Appl. Sc., 27 (2023), 281–289.
[3] A. M. A. AL-Qashbari, Recurrence decompositions in Finsler space, Journal of Mathematical Analysis and Modelling, 1 (2020), 77–86.
[4] A. M. A. AL-Qashbari, Some identities for generalized curvature tensors in B-recurrent Finsler space, Journal of New Theory, 32 (2020), 30–39.
[5] M. A. H. Al-Qufail, Decomposability of curvature tensors in non-symmetric recurrent Finsler space, Imperial Journal of Interdisciplinary Research, 3(2) (2017), 198–201.
[6] L. Berwald, On Finsler and Cartan geometries III: Two-dimensional Finsler spaces with rectilinear external, Ann. of Math., 42(2) (1941), 84–122.
[7] M. S. Bisht and U. S. Negi, Decomposition of normal projective curvature tensor fields in Finsler manifolds, International Journal of Statistics and Applied Mathematics, 6(1) (2021), 237–241.
[8] B. Misra, S. B. Misra, K. Srivastava, and R. B. Srivastava, Higher-order recurrent Finsler spaces with Berwalds curvature tensor field, Journal of Chemical, Biological, and Physical Sciences, 4(1) (2013), 624–631.
[9] D. S. Negi and K. S. Rawat, The study of decomposition in Kählerian space, Acta Cien. Ind., XXIII(4) (1997), 307–311.
[10] D. S. Negi and K. S. Rawat, On decomposition of recurrent curvature tensor fields in a Kählerian space, Acta Cien. Indica Mathematics, 21 (1995), 151–154.
[11] P. N. Pandey, S. Saxena, and A. Goswani, On a generalized H-recurrent space, Journal of International Academy of Physical Sciences, 15 (2011), 201–211.
[12] F. Y. A. Qasem, A. M. A. AL-Qashbari, and M. M. Q. Husien, On study generalized Rh-trirecurrent affinely connected space, Journal of Scientific and Engineering Research, 6(11) (2019), 179–186.
[13] F. Y. A. Qasem, On generalized H-birecurrent Finsler space, International Journal of Mathematics and its Applications, 4(2-B) (2016), 51–57.
[14] K. S. Rawat and N. Uniyal, Decomposition of curvature tensor fields in a Tachibana recurrent space, Ultra Scientist of Physical Sciences: An International Journal of Physical Sciences, 24(2) (2012), 424–428.
[15] K. S. Rawat and K. Singh, Decomposition of curvature tensor fields in a Tachibana first-order recurrent space, Acta Cien. Ind., XXXV M(3) (2009), 1081–1085.
[16] K. S. Rawat and G. Dobhal, The study of decomposition in a Kählerian recurrent space, Acta Cien. Ind., XXXIII(4) (2007), 1341–1345.
[17] K. S. Rawat and G. Dobhal, Some theorems on decomposition of Tachibana recurrent space, Jour. PAS, 13(Ser. A) (2007), 458–464.
[18] K. S. Rawat and G. P. Silswal, Decomposition of recurrent curvature tensor fields in a Kählerian recurrent space, Acta Cien. Ind., XXXI(3) (2005), 795–799.