The Bayesian Design of Kaplan Meier Estimation Using Gibbs Sampling: Application in econometrics of duration models

Main Article Content

Ahmed Hamimes
Rachid Benamirouche

Abstract

A Bayesian approach to survival offers practical, simple and relatively easy
solutions to exploit digitally. In this contribution, we will demonstrate the effectiveness of
the Bayesian approach in the modeling of durations and in an econometric context, we
propose the Bayesian design of the Kaplan Meier estimator based on the stochastic
approximation, which is represented here by the Gibbs sampling. Our contribution is to
improve the deductive stage in estimating nonparametric survival times and under
censorship, and this is what we reached in our research by means of the hierarchical prior
distribution.

Article Details

How to Cite
Hamimes, A., & Benamirouche, R. (2020). The Bayesian Design of Kaplan Meier Estimation Using Gibbs Sampling: Application in econometrics of duration models. Finance and Business Economies Review, 4(4), 151–168. Retrieved from https://jiamcs.centre-univ-mila.dz/index.php/fber/article/view/1234
Section
Articles

References

Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the

Bayesian restoration of image. IEEE Trans. Pattern Anal. Mach. Intell., 6,721-741.

• Khizanov, V. G., Maĭboroda, R. (2015). A modified Kaplan-Meier estimator for a

model of mixtures with varying concentrations. Theor. Probability and Math. Statist. 92

(2016), 109-116.

• Le Goff, J.M., Foney, Y. (2013). Méthodes non paramétriques de l’analyse des

événements du parcours de vie (event history analysis). Cahier de Recherches et

Méthodes, Université de Lausanne, 2.

• Robert, C.P. Des spécificités de l'approche bayésienne et de ses justifications

en statistique inférentielle. In Les approches et méthodes bayésiennes, sciences et

épistémologie (ed. I. Drouet). Éditions Matériologiques (to appear). Available as arxiv :

4429.

• Robert, C.P. (2006). Le choix Bayésien : principes et pratiques. Springer.

Robert, C.P., Casella, G. (2004). Monte Carlo methods. Springer, New York,

seconde edition.

• Rossa, A. and Zieli´nski, R. (1999). Locally Weibull-Smoothed Kaplan–Meier

Estimator, Institute of Mathematics Polish Academy of Sciences, Preprint 599.

• Rossa, A., & Zieliński, R. (2002). A simple improvement of the Kaplan-Meier

estimator. Communications in Statistics-Theory and Methods, 31(1), 147-158.

• Shafiq, M., Shah, S., & Alamgir, M. (2007). Modified Weighted Kaplan Meier

Estimator. Pakistan Journal of Statistics and Operation Research, 3(1), 39-44.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.