Modeling and Estimation of Financial Time Series Using Long Memory Model (Palestine Stock Market as a Model)
Main Article Content
Abstract
This study aimed to using long memory model to modeling and estimation of Financial Time Series , through the study and analysis of time series data for Stock Prices in Palestine Stock Market, using the Autoregressive Fractionally Integrated Moving Average model -ARFIMA (p, d, q)-, where we have verified by several mathematical and graphical tests; that the series have a long memory property. Then we determined the value of the fractional difference parameter (d) for ARFIMA model; using three estimating methods, where dSperio method outperformed on the other three methods, R / S, Fracdiff and Empirical Hurst Exponent, to obtain the ARFIMA model required. Statistical results also indicated that the most appropriate model to represent the data series Stock prices in Palestine Stock Market is ARFIMA (2,0. 3134419,2), with a value of fractional difference (d = 0.3134419), which has succeeded in all necessary Diagnostic statistical tests.
Article Details
References
ساهد، عبد القادر، ومكيدش، محمد، (2014). استخدام نماذج الذاكرة الطويلة ARFIMA للتنبؤ بأسعار البترول، مجلة البحوث الاقتصادية والمالية، العدد 01, 16-76 .
محمد، شكوري (2012). وفرة الموارد الطبيعية والنمو الاقتصادي دراسة حالة الاقتصاد الجزائري، رسالة دكتوراه، جامعة أبي بكر بلقايد، تلمسان، الجزائر.
معمر، ياسمينة و قويزي، نور الهدي (2016). دراسة قياسية لسلوك سعر صرف الدينار الجزائري مقابل الدولار باستخدام نماذج الذاكرة الطويلة ARFIMA، جامعة ابو بكر بلقايد، تلمسان، الجزائر.
Baillie, R.T. (1996). Long memory processes and fractional integration in economics, Journal of Econometrics, Vol. 73, pp. 5–59.
Beran, J. (1989). A test of location for data with slowly decaying serial correlations, Biometrika, 76:261-269.
Beran, J. (1994). Statistics for Long Memory Processes, New York: Chapman and Hall.
Brockwell, P. J. and Davis, R. A. (1995). Time Series Theory and Method, Springer.
Brockwell, P.J. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer-Verlag: New York.
Bryce, R. M. and Sprague, K. B. (2012). Revisiting detrended fluctuation analysis, Scientific Reports 315(2).
Ceballos, R. and Largo, F.,(2017). On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution, Imperial Journal of Interdisciplinary Research (IJIR), Vol-3, Issue-8,PP:424-434.
Dickey, D. A., and Fuller, W. A. (1979).Distribution of the estimators for Autoregressive Time Series With a unit Root, Journal of the American Statistical Association, N. 74: pp .427-431.
Geweke, J. and Porter-Hudak, S. (1983). The Estimation and Application of Long Memory Time Series Models, Journal of Time Series Analysis, Vol. 4(4), 221-238.
Gujarati, D. and Porter, D. (2009). Basic Econometrics. New York: McGraw-Hill/Irwin.
Haslett .J and Raftery . A. E (1989). Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with Discussion); Applied Statistics Vol. 38, No.1,1-50. R.
Hosking, J. (1981). Fractional Differencing, Biometrika, Vol. 68(1), 165-176.
Hurst, H.R. (1951). Long-term storage in reservoirs, Trans. Am. Soc. Civil Eng., Vol. 116, pp. 770–799.
Lardic. S, Mignon. V.( 2002). Econométrie des séries temporelles macroéconomiques et financière, Economica, Paris, p 182-183.
Lo, A. W. (1991). Long-term memory in stock market prices, Econometrica, Vol. 59(5), pp.1279-1313.
Mandelbrot, B.B. and Wallis, J.R. (1968). Noah, Joseph and operational hydrology, Water Resources Research 4.
Mandelbrot, B.B. and Wallis, J.R. (1969). Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence, Water Resources Research, Vol. 5 (5).
McLeod, A. and Hipel, K. W. (1978). Preservation of the rescaled adjusted range 1. a reassesment of the hurst phenomenon, Water Resources Research, Vol. 14(3), pp. 491–518.
Peng, C. K., Buldyrev, S. V., and Simons, M. (1994). Nature and Fractals, Physics Rev,: 168.
Phillip P.C.B. and Perron P. (1988). Testing for a unit root in time series regression, Biometrika, Vol: 75, pp. 335-346.
Reisen, V.A. (1994). Estimation of the Fractional Difference Parameter in the ARIMA(p,d,q) model using the Smoothed Periodogram, Journal of Time Series Analysis, Vol. 15, pp. 335–350.
Sowell, F. (1992b). Modeling long-run behavior with the fractional ARIMA-model, Journal of Monetary Econometrics, Vol.29,pp. 277-302.