An approach to functional description of mass-operational characteristics in the tasks of quality control of raw materials

Main Article Content

Darya Sandulyak
Anna Sandulyak
Maria Polysmakova
Alexander Sandulyak
Nikita Solovev

Abstract

The paper presents a mathematical approach to solving an applied problem, namely determining the content of metal-containing impurities in the building industry. An example involving the magnetic control of a quartz sand sample is considered. The results are presented graphically and additionally processed in semi-logarithmic coordinates. Using the proposed method, the total mass of impurities in the sample was calculated, as well as the mass removed during a limited number of operations for extracting metal impurities, and the consistency of the control was assessed.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Sandulyak, D. et al. 2025. An approach to functional description of mass-operational characteristics in the tasks of quality control of raw materials. Journal of Innovative Applied Mathematics and Computational Sciences. 5, 1 (Jul. 2025), 25–30. DOI:https://doi.org/10.58205/jiamcs.v5i1.1926.
Section
Research Articles

References

[1] A.K. Agarwal, J. Bijwe, L.M. Das, Wear assessment in a biodiesel fueled compression ignition engine, J. Eng. Gas Turbines Power, 125 (2003), 820–826. https://doi.org/10.1115/1.1501079

[2] E. Bringas, J. Saiz, I. Ortiz, Removal of As(V) from groundwater using functionalized magnetic adsorbent materials: Effect of competing ions, Sep. Purif. Technol., 156 (2015), 699–707. https://doi.org/10.1016/j.seppur.2015.10.068

[3] L. Chen, Z. Qian, S. Wen, S. Huang, High-gradient magnetic separation of ultrafine particles with rod matrix, Min. Proc. Ext. Met. Rev., 34 (2013), 340–347. https://doi.org/10.1080/08827508.2012.695304

[4] M.P. Cuerva, A.C. Gonçalves, M.C.F. Albuquerque, F.R. Chavarette, R. Outa, E.F. Almeida, Analysis of the influence of contamination in lubricant by biodiesel in a pin-on-disk equipment, Mater. Res., 25 (2022), e20210375. https://doi.org/10.1590/1980-5373-MR-2021-0375

[5] Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, C.W. Kim, Upgrading of low-grade manganese ore by selective reduction of iron oxide and magnetic separation, Metall. Mater. Trans. B, 43(6) (2012), 1465–1475. https://doi.org/10.1007/s11663-012-9731-6

[6] A.C. Goncalves, F.R. Chavarette, R. Outa, L.H.A. Godoi, Assistance of analytical ferrography in the interpretation of wear test results carried out with biolubricants, Tribol. Int., 197 (2024), 109758. https://doi.org/10.1016/j.triboint.2024.109758

[7] R. Jia, B. Ma, C. Zheng, L. Wang, X. Ba, Q. Du, K. Wang, Magnetic properties of ferromagnetic particles under alternating magnetic fields: Focus on particle detection sensor applications, Sensors, 18(12) (2018), 4144. https://doi.org/10.3390/s18124144

[8] S.K. Jena, N. Dash, A.K. Samal, P.K. Misra, Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects, Korean J. Chem. Eng., 36 (2019), 2060–2073. https://doi.org/10.1007/s11814-019-0393-9

[9] Z. Kheshti, K. Azodi Ghajar, A. Altaee, M.R. Kheshti, High-gradient magnetic separator (HGMS) combined with adsorption for nitrate removal from aqueous solution, Sep. Purif. Technol., 212 (2019), 650–659. https://doi.org/10.1016/j.seppur.2018.11.080

[10] X. Liu, J. Wang, K. Sun, L. Cheng, M. Wu, X. Wang, Semantic segmentation of ferrography images for automatic wear particle analysis, Eng. Fail. Anal., 122 (2021), 105268. https://doi.org/10.1016/j.engfailanal.2021.105268

[11] J. Lu, Z. Yuan, N. Wang, S. Liu, Q. Meng, J. Liu, Selective surface magnetization of pentlandite with magnetite and magnetic separation, Powder Technol., 317 (2017), 162–170. https://doi.org/10.1016/j.powtec.2017.04.031

[12] A. Merino-Martos, J. de Vicente, L. Cruz-Pizarro, I. de Vicente, Setting up high gradient magnetic separation for combating eutrophication of inland waters, J. Hazard. Mater., 186 (2011), 2068–2074. https://doi.org/10.1016/j.jhazmat.2010.12.118

[13] Patent RF 93305. Sandulyak A.A., Polismakova M.N., Svistunov D.A., et al., Ustrojstvo dlya opredeleniya soderzhaniya v tekuchej srede magnitovospriimchivyh primesej (varianty), 2010. (in Russ.)

[14] A.V. Sandulyak, A.A. Sandulyak, D.V. Ershov, D.A. Sandulyak, V.A. Ershova, Magnetic separation of raw materials for glass and ceramic production: Problems of ferruginous impurity control (review), Glass Ceram., 69 (2012), 208–213. https://doi.org/10.1007/s10717-012-9448-7

[15] S. Singh, H. Sahoo, S. Rath, A.K. Sahu, B. Das, Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating, Powder Technol., 269 (2015), 38–45. https://doi.org/10.1016/j.powtec.2014.08.065

[16] N. Tandon, A. Parey, Condition monitoring of rotary machines, in: Condition Monitoring and Control for Intelligent Manufacturing, Springer Series in Advanced Manufacturing, 5 (2006), 109–136. https://doi.org/10.1007/1-84628-269-1-5

[17] P. Toneguzzo, G. Viau, F. Fiévet, Monodisperse ferromagnetic metal particles: Synthesis by chemical routes, size control and magnetic characterizations, Handbook Adv. Magn. Mater., 37(19) (2006), 1193–1242. https://doi.org/10.1007/1-4020-7984-2-29

[18] S.K. Tripathy, V. Singh, Y.R. Murthy, P.K. Banerjee, N. Suresh, Influence of process parameters of dry high intensity magnetic separators on separation of hematite, Int. J. Miner. Process., 160 (2017), 16–31. https://doi.org/10.1016/j.minpro.2017.01.007

[19] S.K. Tripathy, P.K. Banerjee, N. Suresh, Y.R. Murthy, V. Singh, Dry high-intensity magnetic separation in mineral industry: a review of present status and future prospects, Min. Proc. Ext. Met. Rev., 38 (2017), 339–365. https://doi.org/10.1080/08827508.2017.1323743

[20] S.K. Tripathy, P.K. Banerjee, N. Suresh, Separation analysis of dry high intensity induced roll magnetic separator for concentration of hematite fines, Powder Technol., 264 (2014), 527–535. https://doi.org/10.1016/j.powtec.2014.05.065

[21] J. Xu, J. Chen, X. Ren, T. Xiong, K. Liu, S. Song, A novel dry vibrating HGMS separator for purification of potash feldspar ore, Sep. Sci. Technol., 3 (2022), 484–491. https://doi.org/10.1080/01496395.2021.1900250

[22] C. Yang, S. Li, C. Zhang, J. Bai, Z. Guo, Application of superconducting high gradient magnetic separation technology on silica extraction from iron ore beneficiation tailings, Min. Proc. Ext. Met. Rev., 39 (2018), 44–49. https://doi.org/10.1016/j.jhazmat.2017.09.007

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.