An approach to functional description of mass-operational characteristics in the tasks of quality control of raw materials
Main Article Content
Abstract
The paper presents a mathematical approach to solving an applied problem, namely determining the content of metal-containing impurities in the building industry. An example involving the magnetic control of a quartz sand sample is considered. The results are presented graphically and additionally processed in semi-logarithmic coordinates. Using the proposed method, the total mass of impurities in the sample was calculated, as well as the mass removed during a limited number of operations for extracting metal impurities, and the consistency of the control was assessed.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Authors keep the rights and guarantee the Journal of Innovative Applied Mathematics and Computational Sciences the right to be the first publication of the document, licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License that allows others to share the work with an acknowledgement of authorship and publication in the journal.
- Authors are allowed and encouraged to spread their work through electronic means using personal or institutional websites (institutional open archives, personal websites or professional and academic networks profiles) once the text has been published.
References
[1] A.K. Agarwal, J. Bijwe, L.M. Das, Wear assessment in a biodiesel fueled compression ignition engine, J. Eng. Gas Turbines Power, 125 (2003), 820–826. https://doi.org/10.1115/1.1501079
[2] E. Bringas, J. Saiz, I. Ortiz, Removal of As(V) from groundwater using functionalized magnetic adsorbent materials: Effect of competing ions, Sep. Purif. Technol., 156 (2015), 699–707. https://doi.org/10.1016/j.seppur.2015.10.068
[3] L. Chen, Z. Qian, S. Wen, S. Huang, High-gradient magnetic separation of ultrafine particles with rod matrix, Min. Proc. Ext. Met. Rev., 34 (2013), 340–347. https://doi.org/10.1080/08827508.2012.695304
[4] M.P. Cuerva, A.C. Gonçalves, M.C.F. Albuquerque, F.R. Chavarette, R. Outa, E.F. Almeida, Analysis of the influence of contamination in lubricant by biodiesel in a pin-on-disk equipment, Mater. Res., 25 (2022), e20210375. https://doi.org/10.1590/1980-5373-MR-2021-0375
[5] Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, C.W. Kim, Upgrading of low-grade manganese ore by selective reduction of iron oxide and magnetic separation, Metall. Mater. Trans. B, 43(6) (2012), 1465–1475. https://doi.org/10.1007/s11663-012-9731-6
[6] A.C. Goncalves, F.R. Chavarette, R. Outa, L.H.A. Godoi, Assistance of analytical ferrography in the interpretation of wear test results carried out with biolubricants, Tribol. Int., 197 (2024), 109758. https://doi.org/10.1016/j.triboint.2024.109758
[7] R. Jia, B. Ma, C. Zheng, L. Wang, X. Ba, Q. Du, K. Wang, Magnetic properties of ferromagnetic particles under alternating magnetic fields: Focus on particle detection sensor applications, Sensors, 18(12) (2018), 4144. https://doi.org/10.3390/s18124144
[8] S.K. Jena, N. Dash, A.K. Samal, P.K. Misra, Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects, Korean J. Chem. Eng., 36 (2019), 2060–2073. https://doi.org/10.1007/s11814-019-0393-9
[9] Z. Kheshti, K. Azodi Ghajar, A. Altaee, M.R. Kheshti, High-gradient magnetic separator (HGMS) combined with adsorption for nitrate removal from aqueous solution, Sep. Purif. Technol., 212 (2019), 650–659. https://doi.org/10.1016/j.seppur.2018.11.080
[10] X. Liu, J. Wang, K. Sun, L. Cheng, M. Wu, X. Wang, Semantic segmentation of ferrography images for automatic wear particle analysis, Eng. Fail. Anal., 122 (2021), 105268. https://doi.org/10.1016/j.engfailanal.2021.105268
[11] J. Lu, Z. Yuan, N. Wang, S. Liu, Q. Meng, J. Liu, Selective surface magnetization of pentlandite with magnetite and magnetic separation, Powder Technol., 317 (2017), 162–170. https://doi.org/10.1016/j.powtec.2017.04.031
[12] A. Merino-Martos, J. de Vicente, L. Cruz-Pizarro, I. de Vicente, Setting up high gradient magnetic separation for combating eutrophication of inland waters, J. Hazard. Mater., 186 (2011), 2068–2074. https://doi.org/10.1016/j.jhazmat.2010.12.118
[13] Patent RF 93305. Sandulyak A.A., Polismakova M.N., Svistunov D.A., et al., Ustrojstvo dlya opredeleniya soderzhaniya v tekuchej srede magnitovospriimchivyh primesej (varianty), 2010. (in Russ.)
[14] A.V. Sandulyak, A.A. Sandulyak, D.V. Ershov, D.A. Sandulyak, V.A. Ershova, Magnetic separation of raw materials for glass and ceramic production: Problems of ferruginous impurity control (review), Glass Ceram., 69 (2012), 208–213. https://doi.org/10.1007/s10717-012-9448-7
[15] S. Singh, H. Sahoo, S. Rath, A.K. Sahu, B. Das, Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating, Powder Technol., 269 (2015), 38–45. https://doi.org/10.1016/j.powtec.2014.08.065
[16] N. Tandon, A. Parey, Condition monitoring of rotary machines, in: Condition Monitoring and Control for Intelligent Manufacturing, Springer Series in Advanced Manufacturing, 5 (2006), 109–136. https://doi.org/10.1007/1-84628-269-1-5
[17] P. Toneguzzo, G. Viau, F. Fiévet, Monodisperse ferromagnetic metal particles: Synthesis by chemical routes, size control and magnetic characterizations, Handbook Adv. Magn. Mater., 37(19) (2006), 1193–1242. https://doi.org/10.1007/1-4020-7984-2-29
[18] S.K. Tripathy, V. Singh, Y.R. Murthy, P.K. Banerjee, N. Suresh, Influence of process parameters of dry high intensity magnetic separators on separation of hematite, Int. J. Miner. Process., 160 (2017), 16–31. https://doi.org/10.1016/j.minpro.2017.01.007
[19] S.K. Tripathy, P.K. Banerjee, N. Suresh, Y.R. Murthy, V. Singh, Dry high-intensity magnetic separation in mineral industry: a review of present status and future prospects, Min. Proc. Ext. Met. Rev., 38 (2017), 339–365. https://doi.org/10.1080/08827508.2017.1323743
[20] S.K. Tripathy, P.K. Banerjee, N. Suresh, Separation analysis of dry high intensity induced roll magnetic separator for concentration of hematite fines, Powder Technol., 264 (2014), 527–535. https://doi.org/10.1016/j.powtec.2014.05.065
[21] J. Xu, J. Chen, X. Ren, T. Xiong, K. Liu, S. Song, A novel dry vibrating HGMS separator for purification of potash feldspar ore, Sep. Sci. Technol., 3 (2022), 484–491. https://doi.org/10.1080/01496395.2021.1900250
[22] C. Yang, S. Li, C. Zhang, J. Bai, Z. Guo, Application of superconducting high gradient magnetic separation technology on silica extraction from iron ore beneficiation tailings, Min. Proc. Ext. Met. Rev., 39 (2018), 44–49. https://doi.org/10.1016/j.jhazmat.2017.09.007