Using Data Mining Techniques with RFM Model to Estimate Customer Lifetime Value: a Case Study

Main Article Content

صلاح الدين قوت
بلحاج طارق

Abstract

Through this paper, we aim to find a simple and practical way to segment customers on the basis of their profitability, as we explain the concept of customer lifetime value (CLV) RFM model and data mining (DM), and by applying the RFM model to an industrial organization transaction database with a data mining technique represented by the aggregate K-means Clustering algorithm, we estimated the lifetime value of each group of customers obtained, the results showed that using this method facilitates the allocation of resources and the development of appropriate marketing strategies.

Article Details

How to Cite
قوت ص. ا., & طارق ب. (2023). Using Data Mining Techniques with RFM Model to Estimate Customer Lifetime Value: a Case Study. Milev Journal of Research and Studies, 9(2), 57–73. https://doi.org/10.58205/mjrs.v9i2.1796
Section
Articles

References

Azadnia, A. H., Saman, M. Z., Wong, K. Y., & Hemdi, A. R. (2011). Integration model of Fuzzy C means clustering algorithm and TOPSIS Method for Customer Lifetime Value Assessment. 2011 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 16-20). IEEE.

Berahmana, R. W., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-means, K-medoids, and DBSCAN methods. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi , 11 (1), 32-43.

Blattberg, R. C., Malthouse, E. C., & Neslin, S. A. (2009). Customer lifetime value: Empirical generalizations and some conceptual questions. Journal of Interactive Marketing , 23 (2), 157-168.

Bursk, E. C. (1966). View your customers as investments. Harvard Business Review , 44 (3), 91-94.

Chang, H.-C., & Tsai, H.-P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications , 38 (12), 14499-14513.

Chang, W., Chang, C., & Li, Q. (2012). Customer lifetime value: A review. Social Behavior and Personality: an international journal , 40 (7), 1057-1064.

Chen, Y.-L., Kuo, M.-H., Wu, S.-Y., & Tang, K. (2009). Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electronic Commerce Research and Applications , 8 (5), 241-251.

Cheng, C.-H., & Chen, Y.-S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications , 36 (3), 4176-4184.

Colombo, R., & Jiang, W. (1999). A stochastic RFM model. Journal of Interactive Marketing , 13 (3), 2-12.

Dorrington, P., & Goodwin, J. (2002). The role of lifetime value in customer relationship management. Interactive Marketing , 4 (1), 7-18.

Dursun, A., & Caber, M. (2016). Using data mining techniques for profiling profitable hotel customers: An application of RFM analysis. Tourism management perspectives , 18, 153-160.

Dwyer, F. R. (1997). Customer lifetime valuation to support marketing decision making. Journal of Direct Marketing , 11 (4), 6-13.

Estrella-Ramón, A., Sánchez-Pérez, M., Swinnen, G., & VanHoof, K. (2013). A marketing view of the customer value: Customer lifetime value and customer equity. South African Journal of Business Management , 44 (4), 47-64.

Fader, P. S., & Hardie, B. G. (2009). Probability Models for Customer-Base Analysis. Journal of interactive marketing , 23 (1), 61-69.

Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of marketing research , 42 (4), 415-430.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine , 17 (3), 37-54.

Glady, N., Baesens, B., & Croux, C. (2009). Modeling churn using customer lifetime value. European Journal of Operational Research , 197 (1), 402–411.

Gupta, S., & Lehmann, D. R. (2006). Customer Lifetime Value and Firm Valuation. Journal of Relationship Marketing , 5 (2-3), 87-110.

Heitz, C., Dettling, M., & Ruckstuhl, A. (2011). Modelling customer lifetime value in contractual settings. International Journal of Services Technology and Management , 16 (2), 172-190.

Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research , 127, 444-453.

Hoekstra, J. C., & Huizingh, E. K. (1999). The lifetime value concept in customer-based marketing. Journal of Market-Focused Management , 3 (3), 257-274.

Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: case study. Procedia Computer Science , 3, 57-63.

Klastorin, T. (1983). Assessing Cluster Analysis Results. Journal of Marketing Research , 20 (1), 92-98.

Kotler, P. (1974). Marketing during periods of shortage. Journal of marketing , 38 (3), 20-29.

Kumar, V. (2008). Customer Lifetime Value—The Path to Profitability. Foundations and trends® in marketing , 2 (1), 1-96.

Kumar, V., Ramani, G., & Bohling, T. (2004). Customer lifetime value approaches and best practice applications. Journal of interactive Marketing , 18 (3), 60-72.

Madhulatha, T. S. (2012). An overview on clustering methods. Journal of Engineering , 2 (4), 719-725.

Malthouse, E. C., & Blattberg, R. C. (2005). Can we predict customer lifetime value? Journal of interactive marketing , 19 (1), 2-16.

McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression. Journal of business research , 60 (6), 656-662.

Mesforoush, A., & Tarokh, M. (2013). Customer profitability segmentation for SMEs case study: network equipment company. International Journal of Research in Industrial Engineering , 2 (1), 30-44.

Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management , 8 (1), 67-72.

Omran, M. G., Engelbrecht, A. P., & Salman, A. (2007). An overview of clustering methods. Intelligent Data Analysis , 11 (6), 583–605.

Ozkan, P., & Deveci Kocakoc, I. (2021). A Customer Segmentation Model Proposal for Retailers: RFM-V. University of South Florida M3 Center Publishing , 5 (2021), 1-12.

Safari, F., Safari, N., & Montazer, G. A. (2016). Customer lifetime value determination based on RFM model. Marketing Intelligence & Planning , 34 (4).

Shen, C.-C., & Chuang, H.-M. (2009). A study on the applications of data mining techniques to enhance customer lifetime value. WSEAS transactions on information Science and applications , 6 (2), 319-328.

Shih, Y.-Y., & Liu, C.-Y. (2003). A method for customer lifetime value ranking—Combining the analytic hierarchy process and clustering analysis. Journal of Database Marketing & Customer Strategy Management , 11 (2), 159-172.

Singh, S. S., & Jain, D. C. (2017). Measuring customer lifetime value: models and analysis. Review of Marketing Research , 37-62.

Singh, S. S., Borle, S., & Jain, D. C. (2009). A generalized framework for estimating customer lifetime value when customer lifetimes are not observed. Qme , 7 (2), 182-205.

Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of marketing , 21 (1), 3-8.

Wilson, H., Daniel, E., & McDonald, M. (2002). Factors for success in customer relationship management (CRM) systems. Journal of marketing management , 18 (1-2), 193-219.

Wu, J., Shi, L., Lin, W.-P., Tsai, S.-B., Li, Y., Yang, L., et al. (2020). An Empirical Study on Customer Segmentation by Purchase Behaviors Using a RFM Model and K-Means Algorithm. Mathematical Problems in Engineering , 1-7.

Yeh, I.-C., Yang, K.-J., & Ting, T.-M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications , 36 (3), 5866-5871.

Zeithaml, V. A., Rust, R. T., & Lemon, K. N. (2001). The customer pyramid: creating and serving profitable customers. California management review , 43 (4), 118-142.

Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied artificial intelligence , 17 (5-6), 375-381.

Zhang, Y., Bradlow, E. T., & Small, D. S. (2015). Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science , 34 (2), 195-208.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.